Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomicro Lett ; 16(1): 194, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743294

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability. In response to the growing demand for green and sustainable energy storage solutions, organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs. Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs, the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry. Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review. Specifically, we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms. In addition, we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances. Finally, challenges and perspectives are discussed from the developing point of view for future AZIBs. We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.

2.
Adv Sci (Weinh) ; : e2310239, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582519

ABSTRACT

Rationally designed organic redox-active materials have attracted numerous interests due to their excellent electrochemical performance and reasonable sustainability. However, they often suffer from poor cycling stability, intrinsic low operating potential, and poor rate performance. Herein, a novel Donor-Acceptor (D-A) bipolar polymer with n-type pyrene-4,5,9,10-tetraone unit storing Li cations and p-type carbazole unit which attracts anions and provides polymerization sites is employed as a cathode for lithium-ion batteries through in situ electropolymerization. The multiple redox reactions and boosted kinetics by the D-A structure lead to excellent electrochemical performance of a high discharge capacity of 202 mA h g-1 at 200 mA g-1, impressive working potential (2.87 and 4.15 V), an outstanding rate capability of 119 mA h g-1 at 10 A g-1 and a noteworthy energy density up to 554 Wh kg-1. This strategy has significant implications for the molecule design of bipolar organic cathode for high cycling stability and high energy density.

3.
ChemSusChem ; 17(4): e202301809, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38230562

ABSTRACT

Dual-ion batteries based on organic electrodes show great potential to break through the bottlenecks existed in conventional LIBs due to their high specific capacity, lifted working voltage, and environmental benignity. Herein, two innovative viologen-based bipolar copolymers poly(viologen-pyrene-4,5,9,10-tetrone dichloride) (PVPTOCl2 ) and poly(viologen-anthraquinone dichloride) (PVAQCl2 ) were synthesized and applied as high performance cathodes for lithium-dual-ion battery. Bearing the dual-ion storage capability of viologen and carbonyls, as well as the conjugated structure of pyrene-4,5,9,10-tetrone, the synthesized copolymers show remarkable electrochemical performances for LIBs. Compared to PVAQCl2 , PVPTOCl2 shows superior electrochemical performance with high initial specific capacity (235.0 mAh g-1 at 200 mA g-1 ), high reversibility (coulombic efficiency up to 99.96 % at 1 A g-1 ), excellent rate performance (150.3 mAh g-1 at 5 A g-1 ) and outstanding cycling stability (a reversible capacity of 197.5 mAh g-1 at a current density of 1 A g-1 and a low capacity loss per cycle of 0.11‰ during 3000 cycles). Moreover, the charge storage mechanism was systematically investigated by ex-situ FT-IR, ex-situ XPS and DFT calculations. The results clearly reveal the structure-property relationship of the bipolar-molecules, providing a new platform to develop efficient bipolar materials for dual-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...