Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Nano Lett ; 24(14): 4158-4164, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38557108

ABSTRACT

As a quasi-layered ferrimagnetic material, Mn3Si2Te6 nanoflakes exhibit magnetoresistance behavior that is fundamentally different from their bulk crystal counterparts. They offer three key properties crucial for spintronics. First, at least 106 times faster response compared to that exhibited by bulk crystals has been observed in current-controlled resistance and magnetoresistance. Second, ultralow current density is required for resistance modulation (∼5 A/cm2). Third, electrically gate-tunable magnetoresistance has been realized. Theoretical calculations reveal that the unique magnetoresistance behavior in the Mn3Si2Te6 nanoflakes arises from a magnetic field induced band gap shift across the Fermi level. The rapid current induced resistance variation is attributed to spin-orbit torque, an intrinsically ultrafast process (∼nanoseconds). This study suggests promising avenues for spintronic applications. In addition, it highlights Mn3Si2Te6 nanoflakes as a suitable platform for investigating the intriguing physics underlying chiral orbital moments, magnetic field induced band variation, and spin torque.

2.
Nano Lett ; 24(14): 4141-4149, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38536947

ABSTRACT

Recently, van der Waals (vdW) antiferromagnets have been proposed to be crucial for spintronics due to their favorable properties compared to ferromagnets, including robustness against magnetic perturbation and high frequencies of spin dynamics. High-performance and energy-efficient spin functionalities often depend on the current-driven manipulation and detection of spin states, highlighting the significance of two-dimensional metallic antiferromagnets, which have not been much explored due to the lack of suitable materials. Here, we report a new metallic vdW antiferromagnet obtained from the ferromagnet Fe3GaTe2 by cobalt (Co) doping. Through the layer-number-dependent Hall resistance and magnetoresistance measurements, an evident odd-even layer-number effect has been observed in its few-layered flakes, suggesting that it could host an A-type antiferromagnetic structure. This peculiar layer-number-dependent magnetism in Co-doped Fe3GaTe2 helps unravel the complex magnetic structures in such doped vdW magnets, and our finding will enrich material candidates and spin functionalities for spintronic applications.

3.
Medicine (Baltimore) ; 103(1): e36784, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38181288

ABSTRACT

BACKGROUND: The gut microbiota-dependent metabolite trimethylamine N-oxide (TMAO) has recently been recognized to be one of the risk factors for cardiovascular disease (CVD). However, there is a scarcity of data on the relationship between circulating TMAO levels and hypertension in patients with CVD. Meta analysis and a dose-response relationship were used in this study to assess the relationship between circulating trimethylamine N-oxide levels and the risk of hypertension in patients with CVD. METHODS: CNKI, Wanfang Database, Pubmed, Embase, Cochrane Library, and Web of Science were searched up to June 01, 2023. Meta-analysis and dose-response analysis of relative risk data from prospective cohort studies reporting on the relationship between circulating TMAO levels and hypertension risk in patients with CVD were conducted. RESULTS: Fifteen studies with a total of 15,498 patients were included in the present meta-analysis. Compared with a lower circulating TMAO level, a higher TMAO level was associated with a higher risk of hypertension in patients with CVD (RR = 1.14,95%CI (1.08, 1.20)). And the higher the TMAO level, the greater the risk of hypertension. The dose-response analysis revealed a linear dose-response relationship between circulating TMAO levels and the risk of hypertension in patients with CVD. The risk of hypertension increased by 1.014% when the circulating TMAO level increased by 1 µ mol/L. CONCLUSION: In patients with CVD, the level of circulating TMAO is significantly related to the risk of hypertension. The risk of hypertension increased by 1.014% for every 1 µ mol/L increase in circulating TMAO levels.


Subject(s)
Cardiovascular Diseases , Hypertension , Methylamines , Humans , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Hypertension/blood , Hypertension/epidemiology , Methylamines/blood , Prospective Studies
4.
J Orthop Surg (Hong Kong) ; 31(3): 10225536231214055, 2023.
Article in English | MEDLINE | ID: mdl-37971330

ABSTRACT

BACKGROUND: The occurrence of prosthesis-related complications after total shoulder arthroplasty is devastating and costly. The purpose was to determine the incidence and risk of in-hospital prosthesis-related complications after total shoulder arthroplasty utilizing a large-scale sample database. METHODS: A retrospective database analysis was performed based on Nationwide Inpatient Sample from 2010 to 2014. Patients who underwent total shoulder arthroplasty were included. Patient demographics, hospital characteristics, length of stay, economic indicators, in-hospital mortality, comorbidities, and peri-operative complications were evaluated. RESULTS: A total of 34,198 cases were capture from the Nationwide Inpatient Sample database. There were 343 cases of in-hospital prosthesis-related complications after total shoulder arthroplasty and the overall incidence was 1%, with a more than 2.5-fold decrease from 2010 to 2014. Dislocation was the most common category among prosthesis-related complications (0.1%). The occurrence of in-hospital prosthesis-related complications was associated with significantly more total charges and slightly longer length of stay while less usage of Medicare. Risk factors of prosthesis-related complications were identified including younger age (<64 years), female, the native American, hospital in the South, alcohol abuse, depression, uncomplicated diabetes, diabetes with chronic complications, fluid and electrolyte disorders, metastatic cancer, neurological disorders, and renal failure. Interestingly, advanced age (≥65 years) and proprietary hospital were found as protective factors. Furthermore, prosthesis-related complications were associated with aseptic necrosis, rheumatoid arthritis, rotator cuff tear arthropathy, Parkinson's disease, prior shoulder arthroscopy, and blood transfusion. CONCLUSIONS: It is of benefit to study risk factors of prosthesis-related complications following total shoulder arthroplasty to ensure the appropriate management and optimize consequences although a relatively low incidence was identified.


Subject(s)
Arthroplasty, Replacement, Shoulder , Diabetes Mellitus , Shoulder Joint , Humans , Female , Aged , United States/epidemiology , Middle Aged , Arthroplasty, Replacement, Shoulder/adverse effects , Shoulder Joint/surgery , Incidence , Retrospective Studies , Medicare , Risk Factors , Prostheses and Implants/adverse effects , Diabetes Mellitus/etiology , Diabetes Mellitus/surgery , Postoperative Complications/etiology , Treatment Outcome
5.
Innovation (Camb) ; 4(5): 100459, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37560333

ABSTRACT

The search of quantum spin liquid (QSL), an exotic magnetic state with strongly fluctuating and highly entangled spins down to zero temperature, is a main theme in current condensed matter physics. However, there is no smoking gun evidence for deconfined spinons in any QSL candidate so far. The disorders and competing exchange interactions may prevent the formation of an ideal QSL state on frustrated spin lattices. Here we report comprehensive and systematic measurements of the magnetic susceptibility, ultralow-temperature specific heat, muon spin relaxation (µSR), nuclear magnetic resonance (NMR), and thermal conductivity for NaYbSe2 single crystals, in which Yb3+ ions with effective spin-1/2 form a perfect triangular lattice. All these complementary techniques find no evidence of long-range magnetic order down to their respective base temperatures. Instead, specific heat, µSR, and NMR measurements suggest the coexistence of quasi-static and dynamic spins in NaYbSe2. The scattering from these quasi-static spins may cause the absence of magnetic thermal conductivity. Thus, we propose a scenario of fluctuating ferrimagnetic droplets immersed in a sea of QSL. This may be quite common on the way pursuing an ideal QSL, and provides a brand new platform to study how a QSL state survives impurities and coexists with other magnetically ordered states.

6.
Chemistry ; 29(59): e202302132, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37526053

ABSTRACT

Advanced Organic Chemical Materials Co-constructed Mechanically bonded amphiphiles (MBAs), also known as mechanically interlocked molecules (MIMs), have emerged as an important kind of functional building block for the construction of artificial molecular machines and soft materials. Herein, a novel MBA, i. e., bistable [2]rotaxane H2 was designed and synthesized. In the solution state, H2 demonstrated pH and metal ion-responsive emissions due to the presence of a distance-dependent photoinduced electron transfer (PET) process and the fluorescence resonance energy transfer (FRET) process, respectively. Importantly, the amphiphilic feature of H2 has endowed it with unique self-assembly capability, and nanospheres were obtained in a mixed H2 O/CH3 CN solvent. Moreover, the morphology of H2 aggregates can be tuned from nanospheres to vesicles due to the pH-controlled shuttling motion-induced alternation of H2 amphiphilicity. Interestingly, larger spheres with novel pearl-chain-like structures from H2 were observed after adding stoichiometric Zn2+ . In particular, H2 shows pH-responsive emissions in its aggregation state, allowing the visualization of the shuttling movement by just naked eyes. It is assumed that the well-designed [2]rotaxane, and particularly the proposed concept of MBA shown here, will further enrich the families of MIMs, offering prospects for synthesizing more MIMs with novel assembly capabilities and bottom-up building dynamic smart materials with unprecedented functions.

7.
Adv Sci (Weinh) ; 10(28): e2303967, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37541665

ABSTRACT

Full-Heusler alloys (fHAs) exhibit high mechanical strength with earth-abundant elements, but their metallic properties tend to display small electron diffusion thermopower, limiting potential applications as excellent thermoelectric (TE) materials. Here, it is demonstrated that the Co-based fHAs Co2 XAl (X = Ti, V, Nb) exhibit relatively high thermoelectric performance due to spin and charge coupling. Thermopower contributions from different magnetic mechanisms, including spin fluctuation and magnon drag are extracted. A significant contribution to thermopower from magnetism compared to that from electron diffusion is demonstrated. In Co2 TiAl, the contribution to thermopower from spin fluctuation is higher than that from electron diffusion, resulting in an increment of 280 µW m-1  K-2 in the power factor value. Interestingly, the thermopower contribution from magnon drag can reach up to -47 µV K-1 , which is over 2400% larger than the electron diffusion thermopower. The power factor of Co2 TiAl can reach 4000 µW m-1  K-2 which is comparable to that of conventional semiconducting TE materials. Moreover, the corresponding figure of merit zT can reach ≈0.1 at room temperature, which is significantly larger than that of traditional metallic materials. The work shows a promising unconventional way to create and optimize TE materials by introducing magnetism.

9.
Acta Biomater ; 169: 209-227, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37516419

ABSTRACT

At present, surgical debridement and systematic administration of antibiotics represent the mainstay of treatment for chronic osteomyelitis. However, it is now understood that Staphylococcus aureus (S. aureus) can survive within excessively polarized M2 macrophages and evade antibiotics, accounting for the high recurrence of chronic osteomyelitis. Effective treatments for intracellular infection have rarely been reported. Herein, we designed an in situ sprayed liposomes hydrogels spray with macrophage-targeted effects and the ability to reverse polarization and eradicate intracellular bacteria to reduce the recurrence of osteomyelitis. Resiquimod (R848)-loaded and phosphatidylserine (PS)-coating nanoliposomes were introduced into fibrinogen and thrombin to form the PSL-R848@Fibrin spray. Characterization and phagocytosis experiments were performed to confirm the successful preparation of the PSL-R848@Fibrin spray. Meanwhile, in vitro cell experiments validated its ability to eliminate intracellular S. aureus by reprogramming macrophages from the M2 to the M1 phenotype. Additionally, we established a chronic osteomyelitis rat model to simulate the treatment and recurrence process. Histological analysis demonstrated a significant increase in M1 macrophages and the elimination of intracellular bacteria. Imaging revealed a significant decrease in osteomyelitis recurrence. Overall, the liposome hydrogels could target macrophages to promote antibacterial properties against intracellular infection and reduce the recurrence of chronic osteomyelitis, providing the foothold for improving the outcomes of this patient population. STATEMENT OF SIGNIFICANCE: Chronic osteomyelitis remains a high recurrence although undergoing traditional treatment of debridement and antibiotics. S. aureus can survive within the excessively polarized M2 macrophages to evade the effects of antibiotics. However, few studies have sought to investigate effective intracellular bacteria eradication. Herein, we designed a macrophage-targeted R848-containing liposomes fibrin hydrogels spray (PSL-R848@Fibrin) that can reprogram polarization of macrophages and eradicate intracellular bacteria for osteomyelitis treatment. With great properties of rapid gelation, strong adhesion, high flexibility and fit-to-shape capacity, the facile-operated immunotherapeutic in-situ-spray fibrin hydrogels exhibited huge promise of reversing polarization and fighting intracellular infections. Importantly, we revealed a hitherto undocumented treatment strategy for reducing the recurrence of chronic osteomyelitis and potentially improving the prognosis of chronic osteomyelitis patients.


Subject(s)
Osteomyelitis , Staphylococcal Infections , Humans , Rats , Animals , Liposomes , Hydrogels/pharmacology , Hydrogels/therapeutic use , Staphylococcus aureus , Osteomyelitis/drug therapy , Osteomyelitis/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Fibrin/pharmacology
10.
Phys Rev Lett ; 130(25): 256002, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37418707

ABSTRACT

Elemental materials provide clean and fundamental platforms for studying superconductivity. However, the highest superconducting critical temperature (T_{c}) yet observed in elements has not exceeded 30 K. Discovering elemental superconductors with a higher T_{c} is one of the most fundamental and challenging tasks in condensed matter physics. In this study, by applying high pressure up to approximately 260 GPa, we demonstrate that the superconducting transition temperature of elemental scandium (Sc) can be increased to 36 K from the transport measurement, which is a record-high T_{c} for superconducting elements. The pressure dependence of T_{c} implies the occurrence of multiple phase transitions in Sc, which is in agreement with previous x-ray diffraction results. Optimization of T_{c} is achieved in the Sc-V phase, which can be attributed to the strong coupling between d electrons and moderate-frequency phonons, as suggested by our first-principles calculations. This study provides insights for exploring new high-T_{c} elemental metals.


Subject(s)
Electrons , Scandium , Transition Temperature , Temperature , Physics
11.
Nat Commun ; 14(1): 3819, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37369675

ABSTRACT

Van Hove singularity (VHS) has been considered as a driving source for unconventional superconductivity. A VHS in two-dimensional (2D) materials consists of a saddle point connecting electron-like and hole-like bands. In a rare case, when a VHS appears at Fermi level, both electron-like and hole-like conduction can coexist, giving rise to an enhanced density of states as well as an attractive component of Coulomb interaction for unconventional electronic pairing. However, this van Hove scenario is often destroyed by an incorrect chemical potential or competing instabilities. Here, by using angle-resolved photoemission measurements, we report the observation of a VHS perfectly aligned with the Fermi level in a kagome superconductor CsV3-xTaxSb5 (x ~ 0.4), in which a record-high superconducting transition temperature is achieved among all the current variants of AV3Sb5 (A = Cs, Rb, K) at ambient pressure. Doping dependent measurements reveal the important role of van Hove scenario in boosting superconductivity, and spectroscopic-imaging scanning tunneling microscopy measurements indicate a distinct superconducting state in this system.

12.
Article in English | MEDLINE | ID: mdl-37216250

ABSTRACT

Sleep apnea (SA) is a common sleep-related breathing disorder that tends to induce a series of complications, such as pediatric intracranial hypertension, psoriasis, and even sudden death. Therefore, early diagnosis and treatment can effectively prevent malignant complications SA incurs. Portable monitoring (PM) is a widely used tool for people to monitor their sleep conditions outside of hospitals. In this study, we focus on SA detection based on single-lead electrocardiogram (ECG) signals which are easily collected by PM. We propose a bottleneck attention based fusion network named BAFNet, which mainly includes five parts of RRI (R-R intervals) stream network, RPA (R-peak amplitudes) stream network, global query generation, feature fusion, and classifier. To learn the feature representation of RRI/RPA segments, fully convolutional networks (FCN) with cross-learning are proposed. Meanwhile, to control the information flow between RRI and RPA networks, a global query generation with bottleneck attention is proposed. To further improve the SA detection performance, a hard sample scheme with k-means clustering is employed. Experiment results show that BAFNet can achieve competitive results, which are superior to the state-of-the-art SA detection methods. It means that BAFNet has great potential to be applied in the home sleep apnea test (HSAT) for sleep condition monitoring. The source code is released at https://github.com/Bettycxh/Bottleneck-Attention-Based-Fusion-Network-for-Sleep-Apnea-Detection.

13.
Nat Commun ; 14(1): 2260, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37081003

ABSTRACT

The insulator-metal transition in Mott insulators, known as the Mott transition, is usually accompanied with various novel quantum phenomena, such as unconventional superconductivity, non-Fermi liquid behavior and colossal magnetoresistance. Here, based on high-pressure electrical transport and XRD measurements, and first-principles calculations, we find that a unique pressure-induced Mott transition from an antiferromagnetic Mott insulator to a ferromagnetic Weyl metal in the iron oxychalcogenide La2O3Fe2Se2 occurs around 37 GPa without structural phase transition. Our theoretical calculations reveal that such an insulator-metal transition is mainly due to the enlarged bandwidth and diminishing of electron correlation at high pressure, fitting well with the experimental data. Moreover, the high-pressure ferromagnetic Weyl metallic phase possesses attractive electronic band structures with six pairs of Weyl points close to the Fermi level, and its topological property can be easily manipulated by the magnetic field. The emergence of Weyl fermions in La2O3Fe2Se2 at high pressure may bridge the gap between nontrivial band topology and Mott insulating states. Our findings not only realize ferromagnetic Weyl fermions associated with the Mott transition, but also suggest pressure as an effective controlling parameter to tune the emergent phenomena in correlated electron systems.

14.
ACS Appl Mater Interfaces ; 15(16): 20458-20473, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37039625

ABSTRACT

Bacterial biofilms are major causes of persistent and recurrent infections and implant failures. Biofilms are formable by most clinically important pathogens worldwide, such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, causing recalcitrance to standard antibiotic therapy or anti-biofilm strategies due to amphiphilic impermeable extracellular polymeric substances (EPS) and the presence of resistant and persistent bacteria within the biofilm matrix. Herein, we report our design of an oligoamidine-based amphiphilic "nano-sword" with high structural compacity and rigidity. Its rigid, amphiphilic structure ensures effective penetration into EPS, and the membrane-DNA dual-targeting mechanism exerts strong bactericidal effect on the dormant bacterial persisters within biofilms. The potency of this oligoamidine is shown in two distinct modes of application: it may be used as a coating agent for polycaprolactone to fully inhibit surface biofilm growth in an implant-site mimicking micro-environment; meanwhile, it cures model mice of biofilm infections in various ex vivo and in vivo studies.


Subject(s)
Biofilms , Staphylococcal Infections , Mice , Animals , Extracellular Polymeric Substance Matrix , Staphylococcus aureus , Staphylococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Bacteria , Escherichia coli , Pseudomonas aeruginosa
15.
Natl Sci Rev ; 10(2): nwac199, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36935933

ABSTRACT

The quasi-two-dimensional kagome materials AV3Sb5 (A = K, Rb, Cs) were found to be a prime example of kagome superconductors, a new quantum platform to investigate the interplay between electron correlation effects, topology and geometric frustration. In this review, we report recent progress on the experimental and theoretical studies of AV3Sb5 and provide a broad picture of this fast-developing field in order to stimulate an expanded search for unconventional kagome superconductors. We review the electronic properties of AV3Sb5, the experimental measurements of the charge density wave state, evidence of time-reversal symmetry breaking and other potential hidden symmetry breaking in these materials. A variety of theoretical proposals and models that address the nature of the time-reversal symmetry breaking are discussed. Finally, we review the superconducting properties of AV3Sb5, especially the potential pairing symmetries and the interplay between superconductivity and the charge density wave state.

16.
Hum Gene Ther ; 34(21-22): 1145-1161, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36851890

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of hematological malignancies but has yet to achieve similar success in solid tumors due to a lack of persistence and function in the tumor microenvironment. We previously reported the augmentation of CAR T cell therapy in an engineered solid tumor model through the secretion of anti-PD-1 single-chain fragment variable region (scFv), as shown by enhanced CAR T cell antitumor efficacy, expansion, and vitality. We have since improved the platform to create a superior cellular product-CAR T cells secreting single-chain trimeric 4-1BB ligand fused to anti-PD-1 scFv (αPD1-41BBL). 4-1BB signaling promotes cytotoxic T lymphocyte proliferation and survival but targeting 4-1BB with agonist antibodies in the clinic has been hindered by low antitumor activity and high toxicity. CAR T cells using 4-1BB endodomain for costimulatory signals have demonstrated milder antitumor response and longer persistence compared to CAR T cells costimulated by CD28 endodomain. We have, for the first time, engineered CD28-costimulated CAR T cells to secrete a fusion protein containing the soluble trimeric 4-1BB ligand. In vitro and in vivo, CAR19.αPD1-41BBL T cells exhibited reduced inhibitory receptor upregulation, enhanced persistence and proliferation, and a less differentiated memory status compared to CAR T cells without additional 4-1BB:4-1BBL costimulation. Accordingly, CAR19.αPD1-41BBL T cell-treated mice displayed significantly improved tumor growth control and overall survival. Spurred on by our preclinical success targeting CD19 as a model antigen, we produced mesothelin-targeting CAR T cells and confirmed the enhanced solid tumor efficacy of αPD1-41BBL-secreting CAR T cells.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Animals , Mice , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell , CD28 Antigens , 4-1BB Ligand/metabolism , Neoplasms/therapy , Immunotherapy, Adoptive , Tumor Microenvironment
17.
Nano Lett ; 23(5): 1652-1658, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36790199

ABSTRACT

The intrinsic antiferromagnetic topological insulator (TI) MnBi4Te7 provides a capacious playground for the realization of topological quantum phenomena, such as the axion insulator states and quantum anomalous Hall (QAH) effect. In addition to nontrivial band topology, magnetism is another necessary ingredient for realizing these quantum phenomena. Here, we investigate signatures of thickness-dependent magnetism in exfoliated MnBi4Te7 thin flakes. We observe an obvious odd-even layer-number effect in few-layer MnBi4Te7. Noticeably, we show that in monolayer MnBi4Te7 the anomalous Hall effect exhibits a sign reversal. Compared with the case of MnBi2Te4, interlayer antiferromagnetic exchange coupling, which is essential for the realization of the QAH effect, is greatly suppressed in MnBi4Te7. The demonstration of thickness-dependent magnetic properties is helpful to further explore the topological quantum phenomena in MnBi4Te7.

18.
Sci Bull (Beijing) ; 68(3): 259-265, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36681589

ABSTRACT

The recent discovery of superconductivity (SC) and charge density wave (CDW) in kagome metals AV3Sb5 (A = K, Rb, Cs) provides an ideal playground for the study of emergent electronic orders. Application of moderate pressure leads to a two-dome-shaped SC phase regime in CsV3Sb5 accompanied by the destabilizing of CDW phase. Nonetheless, the nature of this pressure-tuned SC state and its interplay with the CDW are yet to be explored. Here, we perform soft point-contact spectroscopy (SPCS) measurements in CsV3Sb5 to investigate the evolution of superconducting order parameter with pressure. Surprisingly, we find that the superconducting gap is significantly enhanced between the two SC domes, at which the zero-resistance temperature is suppressed and the transition is remarkably broadened. Moreover, the temperature-dependence of the SC gap in this pressure range severely deviates from the conventional Bardeen-Cooper-Schrieffer (BCS) behavior, evidencing for strong Cooper pair phase fluctuations. These findings reveal the complex intertwining of the CDW with SC in the compressed CsV3Sb5, suggesting striking parallel to the cuprate superconductor La2-xBaxCuO4. Our results point to the essential role of charge degree of freedom in the development of intertwining electronic orders, and thus provide new constraints for theories.

19.
Adv Mater ; 35(2): e2206941, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36300801

ABSTRACT

Magnetic topological semimetals provide new opportunities for power generation and solid-state cooling based on thermoelectric (TE) effect. The interplay between magnetism and nontrivial band topology prompts the magnetic topological semimetals to yield strong transverse TE effect, while the longitudinal TE performance is usually poor. Herein, it is demonstrated that the magnetic Weyl semimetal TbPtBi has high value for both transverse and longitudinal thermopower with large power factor (PF). At 300 K and 13.5 Tesla, the transverse thermopower and PF reach up to 214 µV K-1 and 35 µW cm-1  K-2 , respectively, which are comparable to those of state-of-the-art TE materials. Combining first-principles calculations, longitudinal magnetoresistance and planar Hall resistance measurements, and two-band model fitting, the large transverse thermopower and PF are attributed to both bipolar effect and large Hall angle. Moreover, the imperfectly compensated charge carriers and large transverse magnetoresistance induce the maximum magneto-longitudinal thermopower of 251 µV K-1 with a PF of 24 µW cm-1  K-2 at 150 K and 13.5 Tesla, which is two times higher than that at zero magnetic field. This work demonstrates the great potential of topological semimetals for TEs and offers a new excellent candidate for magneto-TEs.

20.
J Am Chem Soc ; 145(2): 1262-1272, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36525295

ABSTRACT

Substrate selectivity is one of the most attractive features of natural enzymes from their "bind-to-catalyze" working flow and is thus a goal for the development of synthetic enzyme mimics that mediate abiotic transformations. However, despite the recent success in the preparation of substrate-selective enzyme mimics based on single-chain nanoparticles, examples extending such selectivity into living systems have been absent. In this article, we report the in cellulo substrate selectivity of an enzyme-mimicking macromolecular catalyst based on a cationic dense-shell nanoparticle (DSNP) scaffold. With a systematic study on DSNP's structure-activity relationship, we demonstrate that the DSNP has excellent membrane affinity that is governed by several contributing factors, namely, charge density, type of charge, and particle size, and the best-performing phosphonium-rich DSNP can be used as a membrane-embedded catalyst (MEC) for efficient on-membrane synthesis. Importantly, the DSNP catalyst retains its selectivity toward lipophilic and anionic substrates when working as an MEC for on-membrane ligation. The usefulness of such substrate selectivity and on-membrane catalysis strategy was exemplified with several molecules of interest with low cell permeability and anionic nature, which were successfully transported into eukaryotic cells by after their formation directly on the cell membrane.


Subject(s)
Nanoparticles , Structure-Activity Relationship , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...