Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Microbiome ; 12(1): 109, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907332

ABSTRACT

BACKGROUND: The prevalence of hyperuricaemia (HUA), a metabolic disorder characterized by elevated levels of uric acid, is on the rise and is frequently associated with renal injury. Gut microbiota and gut-derived uremic toxins are critical mediators in the gut-kidney axis that can cause damage to kidney function. Gut dysbiosis has been implicated in various kidney diseases. However, the role and underlying mechanism of the gut microbiota in HUA-induced renal injury remain unknown. RESULTS: A HUA rat model was first established by knocking out the uricase (UOX). HUA rats exhibited apparent renal dysfunction, renal tubular injury, fibrosis, NLRP3 inflammasome activation, and impaired intestinal barrier functions. Analysis of 16S rRNA sequencing and functional prediction data revealed an abnormal gut microbiota profile and activation of pathways associated with uremic toxin production. A metabolomic analysis showed evident accumulation of gut-derived uremic toxins in the kidneys of HUA rats. Furthermore, faecal microbiota transplantation (FMT) was performed to confirm the effects of HUA-induced gut dysbiosis on renal injury. Mice recolonized with HUA microbiota exhibited severe renal injury and impaired intestinal barrier functions following renal ischemia/reperfusion (I/R) surgery. Notably, in NLRP3-knockout (NLRP3-/-) I/R mice, the deleterious effects of the HUA microbiota on renal injury and the intestinal barrier were eliminated. CONCLUSION: Our results demonstrate that HUA-induced gut dysbiosis contributes to the development of renal injury, possibly by promoting the production of gut-derived uremic toxins and subsequently activating the NLRP3 inflammasome. Our data suggest a potential therapeutic strategy for the treatment of renal diseases by targeting the gut microbiota and the NLRP3 inflammasome. Video Abstract.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Hyperuricemia , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Dysbiosis/microbiology , Inflammasomes/metabolism , Mice , Rats , Male , Disease Models, Animal , Kidney , Mice, Knockout , RNA, Ribosomal, 16S/genetics , Fecal Microbiota Transplantation , Urate Oxidase/metabolism , Mice, Inbred C57BL
2.
ACS Appl Mater Interfaces ; 16(21): 27614-27626, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38722974

ABSTRACT

The formation of nanoscale junctions among nanoparticles in self-assembled nanostructures is crucial for improving both interfacial conductivity and structural integrity. However, the inherent reliance on weak van der Waals forces to hold nanoparticles together poses challenges in developing commercially viable devices due to their inefficient carrier transport characteristics. This study presents the successful integration of carbon nanotubes (CNTs) into highly porous nanomicrocluster arrays of ZnO, resulting in the formation of cohesive and crack-free highly porous ZnO/CNT heterojunction films. This integration marks a significant improvement in UV photodetection performance, demonstrating a record-high photocurrent to dark current ratio of 3.3 × 106 and an exceptional responsivity of 18.5 A/W at a low bias of 0.5 V and under an ultra low light density of 25 µW/cm2. These findings underscore the efficacy of this high-performance structure as a versatile and scalable platform technology for the rapid, cost-effective fabrication of hybrid photodetectors in wearable and portable devices.

3.
J Craniofac Surg ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781430

ABSTRACT

Overmature cataract refers to the advanced stage of cataract where timely surgical intervention is not performed, leading to further progression characterized by decreased water content in the lens, degradation of fibers, and liquefaction within its structure, which can cause a reduction in volume, wrinkling of the capsule, as well as calcification or cholesterol crystallization on its surface. In addition, it may result in deepening of the anterior chamber. If left promptly untreated, these complications may result in visual impairment or even blindness. The occurrence of spontaneous complete dislocation of the lens nucleus into the anterior chamber in overmature cataracts is extremely uncommon. The authors present a case study involving a 74-year-old female patient who was diagnosed with complete dislocation of the lens nucleus in an overmature senile cataract without any apparent ocular injury or any relevant medical records. After undergoing cataract removal combined with anterior vitrectomy, the patient experienced relief from eye discomfort and expressed satisfaction with the surgical outcome; however, her visual acuity did not show significant improvement.

4.
Int J Biol Macromol ; 268(Pt 2): 131972, 2024 May.
Article in English | MEDLINE | ID: mdl-38697436

ABSTRACT

Photochromic hydrogels have promising prospects in areas such as wearable device, information encryption technology, optoelectronic display technology, and electronic skin. However, there are strict requirements for the properties of photochromic hydrogels in practical engineering applications, especially in some extreme application environments. The preparation of photochromic hydrogels with high transparency, high toughness, fast response, colour reversibility, excellent electrical conductivity, and anti-freezing property remains a challenge. In this study, a novel photochromic hydrogel (PAAm/SA/NaCl-Mo7) was prepared by loading ammonium molybdate (Mo7) and sodium chloride (NaCl) into a dual-network hydrogel of polyacrylamide (PAAm) and sodium alginate (SA) using a simple one-pot method. PAAm/SA/NaCl-Mo7 hydrogel has excellent conductivity (175.9 S/cm), water retention capacity and anti-freezing properties, which can work normally at a low temperature of -28.4 °C. In addition, the prepared PAAm/SA/NaCl-Mo7 hydrogel exhibits fast response (<15 s), high transparency (>70 %), good toughness (maximum elongation up to 1500 %), good cyclic compression properties at high compressive strains (60 %), good biocompatibility (78.5 %), stable reversible discolouration and excellent sensing properties, which can be used for photoelectric display, information storage and motion monitoring. This work provides a new inspiration for the development of flexible electronic skin devices.


Subject(s)
Acrylic Resins , Alginates , Electric Conductivity , Hydrogels , Sodium Chloride , Alginates/chemistry , Acrylic Resins/chemistry , Hydrogels/chemistry , Sodium Chloride/chemistry , Wearable Electronic Devices , Freezing , Biocompatible Materials/chemistry , Humans
5.
Gels ; 10(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38667677

ABSTRACT

Hydrogels with excellent flexibility, conductivity, and controllable mechanical properties are the current research hotspots in the field of biomaterial sensors. However, it is difficult for hydrogel sensors to regain their original function after being damaged, which limits their practical applications. Herein, a composite hydrogel (named SPBC) of poly(vinyl alcohol) (PVA)/sodium alginate (SA)/cellulose nanofibers (CNFs)/sodium borate tetrahydrate was synthesized, which has good self-healing, electrical conductivity, and excellent mechanical properties. The SPBC0.3 hydrogel demonstrates rapid self-healing (<30 s) and achieves mechanical properties of 33.92 kPa. Additionally, it exhibits high tensile strain performance (4000%). The abundant internal ions and functional groups of SPBC hydrogels provide support for the good electrical conductivity (0.62 S/cm) and electrical response properties. In addition, the SPBC hydrogel can be attached to surfaces such as fingers and wrists to monitor human movements in real time, and its good rheological property supports three-dimensional (3D) printing molding methods. In summary, this study successfully prepared a self-healing, conductive, printable, and mechanically superior SPBC hydrogel. Its suitability for 3D-printing personalized fabrication and outstanding sensor properties makes it a useful reference for hydrogels in wearable devices and human motion monitoring.

6.
Talanta ; 274: 126043, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38581852

ABSTRACT

Hydrogen peroxide (H2O2) is a common oxidant that plays an important role in many biological processes and is also an important medium analysis in various fields. In this work, a new electrochemical nanosensor capable of detecting and quantifying hydrogen peroxide was introduced. This nanosensor was fabricated by electrodepositing prussian blue (PB)/graphene quantum dots (GQDs)/polypyrrole (PPy) on single nanopore electrode etched from single gold nanoelectrode. This prepapred nanosensor exhibits good electrochemical response to hydrogen peroxide with high sensitivity and stability, with a linear response in the 2.0 and 80 µM by using amperometric method and differential pulse voltammetry (DPV) method. The limit of detections are 0.33 µM (S/N = 3) for amperometric method and 0.67 µM (S/N = 3) for differential pulse voltammetry (DPV) method, respectively. This nanosensor can be used for the determination of hydrogen peroxide in human urine, and can serve as a new electrochemical platform to monitor H2O2 release from single living cells due to its small overal dimension and high sensitivity.

7.
J Colloid Interface Sci ; 665: 163-171, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520933

ABSTRACT

Structuring a stable artificial coating to mitigate dendrite growth and side reactions is an effective strategy for protecting the Zn metal anode. Herein, a Cu-Ag double-layer metal coating is constructed on the Zn anode (Zn@Cu-Ag) by simple and in-situ displacement reactions. The Cu layer enhances the bond between the Ag layer and Zn substrate by acting as an intermediary, preventing the Ag coating from detachment. Concurrently, the Ag layer serves to improve the corrosion resistance of Cu metal. During plating, the initial Cu sheets and Ag particles on the surface of Zn@Cu-Ag electrode gradually transform into a flat and smooth layer, resulting in the formation of AgZn, AgZn3, and (Ag, Cu)Zn4 alloys. Alloys play a multifunctional role in inhibiting dendrite growth and side reactions due to decreased resistance, low nucleation barrier, enhanced zincophilicity, and strong corrosion resistance. Consequently, the Zn@Cu-Ag symmetric cell exhibits continuous stable performance for 3750 h at 1 mA cm-2. Furthermore, the Zn@Cu-Ag||Zn3V3O8 full cell achieves an initial capacity of 293.4 mAh g-1 and realizes long cycling stability over 1200 cycles. This work provides new insight into the engineering of an efficient artificial interface for highly stable and reversible Zn metal anodes.

8.
Heliyon ; 10(5): e27216, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38449660

ABSTRACT

Background: Despite the potential of immune checkpoint blockade (ICB) as a promising treatment for Pancreatic adenocarcinoma (PAAD), there is still a need to identify specific subgroups of PAAD patients who may benefit more from ICB. T cell-mediated tumor killing (TTK) is the primary concept behind ICB. We explored subtypes according to genes correlated with the sensitivity to TKK and unraveled their underlying associations for PAAD immunotherapies. Methods: Genes that control the responsiveness of T cell-induced tumor destruction (GSTTK) were examined in PAAD, focusing on their varying expression levels and association with survival results. Moreover, samples with PAAD were separated into two subsets using unsupervised clustering based on GSTTK. Variability was evident in the tumor immune microenvironment, genetic mutation, and response to immunotherapy among different groups. In the end, we developed TRGscore, an innovative scoring system, and investigated its clinical and predictive significance in determining sensitivity to immunotherapy. Results: Patients with PAAD were categorized into 2 clusters based on the expression of 52 GSTTKs, which showed varying levels and prognostic relevance, revealing unique TTK patterns. Survival outcome, immune cell infiltration, immunotherapy responses, and functional enrichment are also distinguished among the two clusters. Moreover, we found the CATSPER1 gene promotes the progression of PAAD through experiments. In addition, the TRGscore effectively predicted the responses to chemotherapeutics or immunotherapy in patients with PAAD and overall survival. Conclusions: TTK exerted a vital influence on the tumor immune environment in PAAD. A greater understanding of TIME characteristics was gained through the evaluation of the variations in TTK modes across different tumor types. It highlights variations in the performance of T cells in PAAD and provides direction for improved treatment approaches.

9.
BMJ Open ; 14(3): e081727, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521531

ABSTRACT

OBJECTIVES: To explore the impact of the triglyceride-glucose (TyG) index on the severity of coronary stenosis and the risk of in-hospital mortality in patients with acute ST segment elevation myocardial infarction (STEMI) after percutaneous coronary intervention (PCI). DESIGN: A multicentre retrospective cohort study. SETTING: Patients with STEMI undergoing PCI from three centres in China from 2015 to 2019. PARTICIPANTS: A total of 1491 individuals presenting with STEMI were enrolled. PRIMARY OUTCOME MEASURE: The degree of coronary stenosis was quantified by the Gensini score (GS). The association between the TyG index and the severity of coronary stenosis was explored by using a logistic regression analysis. Cox proportional hazards regression analyses were used to investigate the associations between the variables and in-hospital mortality. RESULTS: We found a significant correlation between the TyG index and the degree of coronary stenosis in the present study. The TyG index was an independent risk factor for the severity of coronary stenosis (OR 2.003, p<0.001). Using the lowest tertile of the TyG (T1) group as a reference, the adjusted ORs for the T2 group and the T3 group and a high GS were 1.732 (p<0.001), 1.968 (p<0.001), respectively, and all p for trend <0.001. For predicting a high GS, the TyG index's area under the curve was 0.668 (95% CI 0.635 to 0.700, p<0.001). Additionally, the TyG index was further demonstrated to be an independent predictor of in-hospital mortality in patients with STEMI (HR 1.525, p<0.001). CONCLUSIONS: The TyG index was associated with the severity of coronary stenosis and all-cause in-hospital mortality in patients with STEMI, which may help physicians precisely risk-stratify patients and implement individualised treatment.


Subject(s)
Coronary Stenosis , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Humans , ST Elevation Myocardial Infarction/surgery , Percutaneous Coronary Intervention/adverse effects , Retrospective Studies , Glucose , Hospital Mortality , Triglycerides , Cohort Studies , Treatment Outcome , Risk Factors , Biomarkers
10.
J Med Food ; 27(4): 301-311, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377551

ABSTRACT

Baicalin has been acknowledged for its anti-inflammatory properties. However, its potential impact on osteoarthritis (OA) has not yet been explored. Therefore, our study aimed to examine the effects of Baicalin on OA, both in laboratory and animal models. To evaluate its efficacy, human chondrocytes affected by OA were treated with interleukin-1ß and/or Baicalin. The effects were then assessed through viability tests using the cell counting kit-8 (CCK-8) method and flow cytometry. In addition, we analyzed the expressions of various factors such as FOXO1, autophagy, apoptosis, and cartilage synthesis and breakdown to corroborate the effects of Baicalin. We also assessed the severity of OA through analysis of tissue samples. Our findings demonstrate that Baicalin effectively suppresses inflammatory cytokines and MMP-13 levels caused by collagenase-induced osteoarthritis, while simultaneously preserving the levels of Aggrecan and Col2. Furthermore, Baicalin has been shown to enhance autophagy. Through the use of FOXO1 inhibitors, lentivirus-mediated knockdown, and chromatin immunoprecipitation, we verified that Baicalin exerts its protective effects by activating FOXO1, which binds to the Beclin-1 promoter, thereby promoting autophagy. In conclusion, our results show that Baicalin has potential as a therapeutic agent for treating OA (Clinical Trial Registration number: 2023-61).


Subject(s)
Cartilage, Articular , Flavonoids , Forkhead Box Protein O1 , Osteoarthritis , Animals , Humans , Apoptosis , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Chondrocytes , Flavonoids/pharmacology , Flavonoids/therapeutic use , Forkhead Box Protein O1/drug effects , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Homeostasis , Interleukin-1beta/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism
11.
Phytomedicine ; 125: 155276, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295661

ABSTRACT

BACKGROUND: Coronary microembolism (CME) is commonly seen in the peri-procedural period of Percutaneous Coronary Intervention (PCI), where local platelet activation and endothelial cell inflammation crosstalk may lead to micro thrombus erosion and rupture, with serious consequences. Qihuang Zhuyu Formula (QHZYF) is a Chinese herbal compound with high efficacy against coronary artery disease, but its antiplatelet mechanism is unclear. HYPOTHESIS/PURPOSE: This study aimed to elucidate the effects and mechanisms of QHZYF on sodium laurate-induced CME using network pharmacology and in vitro and in vivo experiments. METHODS: We employed high-performance liquid chromatography mass spectrometry to identify the main components of QHZYF. Network pharmacology analysis, molecular docking and surface plasmon resonance (SPR) were utilized to predict the primary active components, potential therapeutic targets, and intervention pathways mediating the effects of QHZYF on platelet activation. Next, we pretreated a sodium laurate-induced minimally invasive CME rat model with QHZYF. In vivo experiments were performed to examine cardiac function in rats, to locate coronary arteries on heart sections to observe internal microthrombi, to extract rat Platelet-rich plasma (PRP) for adhesion assays and CD62p and PAC-1 (ITGB3/ITGA2B) flow assays, and to measure platelet-associated protein expression in PRP. In vitro clot retraction and Co-culture of HUVECs with PRP were performed and the gene pathway was validated through flow cytometry and immunofluorescence. RESULTS: Combining UPLC-Q-TOF/MS technology and database mining, 78 compounds were finally screened as the putative and representative compounds of QHZYF, with 75 crossover genes associated with CME. QHZYF prevents CME mainly by regulating key pathways of the inflammation and platelets, including Lipid and atherosclerosis, Fluid shear stress, platelet activation, and PI3K-Akt signaling pathways. Five molecules including Calyson, Oroxin A, Protosappanin A,Kaempferol and Geniposide were screened and subjected to molecular docking and SPR validation in combination with Lipinski rules (Rule of 5, Ro5). In vivo experiments showed that QHZYF not only improved myocardial injury but also inhibited formation of coronary microthrombi. QHZYF inhibited platelet activation by downregulating expression of CD62p receptor and platelet membrane protein αIIbß3 and reduced the release of von Willebrand Factor (vWF), Ca2+ particles and inflammatory factor IL-6. Further analysis revealed that QHZYF inhibited the activation of integrin αIIbß3, via modulating the PI3K/Akt pathways. In in vitro experiments, QHZYF independently inhibited platelet clot retraction. Upon LPS induction, the activation of platelet membrane protein ITGB3 was inhibited via the PI3K/Akt pathway, revealing an important mechanism for attenuating coronary microthrombosis. We performed mechanistic validation using PI3K inhibitor LY294002 and Akt inhibitor MK-2206 to show that QHZYF inhibited platelet membrane protein activation and inflammation to improved coronary microvessel embolism by regulating PI3K/Akt/αIIbß3 pathways, mainly by inhibiting PI3K and Akt phosphorylation. CONCLUSION: QHZYF interferes with coronary microthrombosis through inhibition of platelet adhesion, activation and inflammatory crosstalk, thus has potential in clinical anti-platelet applications. Calyson, Oroxin A, Protosappanin A, Kaempferol and Geniposide may be the major active ingredient groups of QHZYF that alleviate coronary microthrombosis.


Subject(s)
Drugs, Chinese Herbal , Iridoids , Percutaneous Coronary Intervention , Phenols , Thrombosis , Rats , Animals , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Kaempferols/pharmacology , Platelet Aggregation , Molecular Docking Simulation , Platelet Activation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Thrombosis/drug therapy , Inflammation , Drugs, Chinese Herbal/pharmacology
12.
Heliyon ; 10(2): e24177, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293445

ABSTRACT

Background: In recent years, baroreflex activation therapy (BAT) has been utilized to treat heart failure with reduced ejection fraction (HFrEF). However, the supporting literature on its efficacy and safety is still limited. This investigation elucidates the effects of BAT in HFrEF patients to provide a reference for future clinical applications. Methods: This investigation follows Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 guidelines. Relevant investigations on the use of BAT in HFrEF patients were searched and selected from 5 databases, including Web of Science, MEDLINE, PubMed, Embase, and Cochrane Library, from inception to December 2022. The methodological quality of eligible articles was assessed via the Cochrane risk of bias tool, and for meta-analysis, RevMan (5.3) was used. Results: Randomized controlled trials comprising 343 participants were selected for the meta-analysis, which revealed that in HFrEF patients, BAT enhanced the levels of LVEF (MD: 2.97, 95 % CI: 0.53 to 5.41), MLHFQ (MD: -14.81, 95 % CI: -19.57 to -10.06) and 6MWT (MD: 68.18, 95 % CI: 51.62 to 84.74), whereas reduced the levels of LVEDV (MD: -15.79, 95 % CI: -32.96 to 1.37) and DBP (MD: -2.43, 95 % CI: -4.18 to -0.68). Conclusion: It was concluded that BAT is an efficient treatment option for HFrEF patients. However, to validate this investigation, further randomized clinical trials with multiple centers and large sample sizes are needed.

13.
Arch Pharm (Weinheim) ; 357(4): e2300540, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38217306

ABSTRACT

A series of new febrifugine derivatives with a 4(3H)-quinazolinone scaffold were synthesized and evaluated for their anticoccidial activity both in vitro and in vivo. The targets' in vitro activity against Eimeria tenella was studied using quantitative real-time reverse transcription polymerase chain reaction and Madin-Darby bovine kidney cells. Most of these compounds demonstrated anticoccidial efficacy, with inhibition ratios ranging from 3.3% to 85.7%. Specifically, compounds 33 and 34 showed significant inhibitory effects on the proliferation of E. tenella and exhibited lower cytotoxicity compared to febrifugine. The IC50 values of compounds 33 and 34 were 3.48 and 1.79 µM, respectively, while the CC50 values were >100 µM for both compounds. Furthermore, in a study involving 14-day-old chickens infected with 5 × 104 sporulated oocysts, treatment with five selected compounds (22, 24, 28, 33, and 34), which exhibited in vitro inhibition rate of over 50% at 100 µM, at a dose of 40 mg/kg in daily feed for 8 consecutive days showed that compound 34 possessed moderate in vivo activity against coccidiosis, with an anticoccidial index of 164. Structure-activity relationship studies suggested that spirocyclic piperidine may be a preferable substructure to maintain high effectiveness in inhibiting Eimeria spp., when the side chain 1-(3-hydroxypiperidin-2-yl)propan-2-one was replaced.


Subject(s)
Coccidiosis , Coccidiostats , Poultry Diseases , Quinazolines , Animals , Cattle , Coccidiostats/pharmacology , Coccidiostats/chemistry , Coccidiostats/therapeutic use , Chickens , Structure-Activity Relationship , Coccidiosis/drug therapy , Coccidiosis/veterinary , Piperidines/pharmacology , Poultry Diseases/drug therapy
14.
ACS Mater Au ; 3(5): 394-417, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-38089090

ABSTRACT

Lack of horizontal and vertical bone at the site of an implant can lead to significant clinical problems that need to be addressed before implant treatment can take place. Guided bone regeneration (GBR) is a commonly used surgical procedure that employs a barrier membrane to encourage the growth of new bone tissue in areas where bone has been lost due to injury or disease. It is a promising approach to achieve desired repair in bone tissue and is widely accepted and used in approximately 40% of patients with bone defects. In this Review, we provide a comprehensive examination of recent advances in resorbable membranes for GBR including natural materials such as chitosan, collagen, silk fibroin, along with synthetic materials such as polyglycolic acid (PGA), polycaprolactone (PCL), polyethylene glycol (PEG), and their copolymers. In addition, the properties of these materials including foreign body reaction, mechanical stability, antibacterial property, and growth factor delivery performance will be compared and discussed. Finally, future directions for resorbable membrane development and potential clinical applications will be highlighted.

15.
Aging (Albany NY) ; 15(23): 14210-14241, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38085668

ABSTRACT

Cuproptosis is a recently reported new mode of programmed cell death which might be a potential co-pathogenesis of three kinds of primary cardiomyopathy. However, no investigation has reported a clear relevance between primary cardiomyopathy and cuproptosis. In this study, the differential cuproptosis-related genes (CRGs) shared by three kinds of primary cardiomyopathy were identified in training sets. As a result, four CRGs shared by three kinds of primary cardiomyopathy were acquired and they were mainly related to biological processes such as cell death and immuno-inflammatory response through differential analysis, correlation analysis, GSEA, GSVA and immune cell infiltration analysis. Then, three key CRGs (K-CRGs) with high diagnostic value were identified by LASSO regression. The results of nomogram, machine learning, ROC analysis, calibration curve and decision curve indicated that the K-CRGs exhibited outstanding performance in the diagnosis of three kinds of primary cardiomyopathy. After that, in each disease, two molecular subtypes clusters were distinguished. There were many differences between different clusters in the biological processes associated with cell death and immunoinflammation and K-CRGs had excellent molecular subtype identification efficacy. Eventually, results from validation datasets and in vitro experiments verified the role of K-CRGs in diagnosis of primary cardiomyopathy, identification of primary cardiomyopathic molecular subtypes and pathogenesis of cuproptosis. In conclusion, this study found that cuproptosis might be the potential common pathogenesis of three kinds of primary cardiomyopathy and K-CRGs might be promising biomarkers for the diagnosis and molecular subtypes identification of primary cardiomyopathy.


Subject(s)
Apoptosis , Cardiomyopathies , Humans , Cell Death , Calibration , Computational Biology , Cardiomyopathies/genetics
16.
Heliyon ; 9(10): e21158, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37928399

ABSTRACT

Background: At present, the pathogenesis of atherosclerosis has not been fully elucidated, and the diagnosis and treatment face great challenges. Cuproptosis is a novel cell death pattern that might be involved in the development of atherosclerosis. However, no research has reported the correlation between cuproptosis and atherosclerosis. Methods: The differential cuproptosis-related genes (CRGs) between atherosclerosis group and control group (A-CRGs) were discovered via differential expression analysis. The correlation analysis, PPI network analysis, GO, KEGG and GSEA analysis were performed to investigate the function of A-CRGs. The differences of biological function between atherosclerosis group and control group were investigated via immune infiltration analysis and GSVA. The LASSO regression, nomogram and machine learning models were constructed to predict atherosclerosis risk. The atherosclerosis molecular subtypes clusters were discovered via unsupervised cluster analysis. Subsequently, we used the above research methods to analyze the differential CRGs between clusters (M-CRGs) and evaluate the molecular subtypes identification performance of M-CRGs. Finally, we verified the diagnostic value for atherosclerosis and role in cuproptosis of these CRGs through the validation set and in vitro experiments. Results: Five A-CRGs were identified and they were mainly related to the biological function of copper ion metabolism and immune inflammatory response. The diagnostic models and nomogram of atherosclerosis based on 5 A-CRGs indicated that these genes had well diagnostic value. A total of two molecular subtypes clusters were obtained in the atherosclerosis group. There were many differences in biological functions between these two molecular subtypes clusters, such as mitochondrial outer membrane permeabilization and primary immunodeficiency. In addition, 3 M-CRGs were identified in the 2 clusters. Machine learning models and nomogram constructed based on M-CRGs showed that these genes had well molecular subtypes identification efficacy. In the end, the results of in vitro experiment and validation set confirmed the diagnostic value for atherosclerosis and role in cuproptosis of these genes. Conclusion: The cuproptosis may be a potential pathogenesis of atherosclerosis and CRGs may be promising markers for the diagnosis and molecular subtypes identification of atherosclerosis.

17.
Cell Death Dis ; 14(9): 590, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37669935

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) is a primary liver malignancy and is characterized by highly aggressive and malignant biological behavior. Currently, effective treatment strategies are limited. The effect of lenvatinib on ICC is unknown. In this study, we found that AZGP1 was the key target of lenvatinib in ICC, and its low expression in ICC cancer tissues was associated with a poor prognosis in patients. Lenvatinib is a novel AZGP1 agonist candidate for ICC that inhibits ICC-EMT by regulating the TGF-ß1/Smad3 signaling pathway in an AZGP1-dependent manner. Furthermore, we found that lenvatinib could increase AZGP1 expression by increasing the acetylation level of H3K27Ac in the promoter region of the AZGP1 gene, thereby inhibiting EMT in ICC cells. In conclusion, lenvatinib activates AZGP1 by increasing the acetylation level of H3K27Ac on the AZGP1 promoter region and regulates the TGF-ß1/Smad3 signaling pathway in an AZGP1-dependent manner to inhibit ICC-EMT. This study offers new insight into the mechanism of lenvatinib in the treatment of ICC and provides a theoretical basis for new treatment methods.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Epithelial-Mesenchymal Transition , Transforming Growth Factor beta1 , Bile Ducts, Intrahepatic , Adipokines
18.
Sci Total Environ ; 903: 166803, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37689190

ABSTRACT

To address the crisis of water shortage in the North China Plain, the Chinese government implemented the South-to-North Water Transfer Project (SNWTP). In this context, Tianjin, one of the main beneficiaries of this project, has been relieved from water shortages and begun to implement Groundwater Management Plans (GMP) since 2018, which undoubtedly have a significant effect on the groundwater recovery. Meanwhile, this provides a good case for studying the coupled process of ground settlement and groundwater dynamics, especially the soil deformation pattern driven by groundwater level (GWL) rebound. To analyze these issues in detail, field well data was collected to depict groundwater flow field. Moreover, geodetic data was also collated, including leveling, GPS, and InSAR, so that a vertical deformation field with high spatiotemporal resolution could be generated. The results reveal that the GWL of the third confined aquifer which is the main exploitation layer in Tianjin recovered significantly since 2018 with a rate of 2.1 m/yr. The dynamic deformation patterns indicate that the area of land subsidence cones in Tianjin has reduced significantly, accompanied by a sharply declining subsidence rate (decreased from -32.2 mm/yr to -4.5 mm/yr.). Particularly, a significant poroelastic rebound has occurred in the Wuqing and Beichen districts since 2020. Furthermore, due to the delayed pore pressure dissipation in the aquitard, we find a time delay of 0.3-5.5 years between land subsidence and GWL time series, which is far less than that estimated by hydrogeological parameters, as the latter ignored the recharge and recovery capacity of the aquifer system. Finally, an evolution models in Tianjin was presented to illustrate interactive process among the deformation, pore pressure, and hydraulic head. In general, the SNWDP and the GMP has restored the pore pressure of aquifer, reduced the land subsidence, and alleviated the groundwater storage depletion of Tianjin.

19.
Biomed Pharmacother ; 167: 115573, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37769391

ABSTRACT

Ovarian cancer (OC) stands as the second most prominent factor leading to cancer-related fatalities, characterized by a notably low five-year survival rate. The insidious onset of OC combined with its resistance to chemotherapy poses significant challenges in terms of treatment, emphasizing the utmost importance of developing innovative therapeutic agents. Despite its remarkable anti-tumor efficacy, celastrol (CEL) faces challenges regarding its clinical utilization in OC due to its restricted water solubility and notable side effects. In this study, celastrol (CEL) was encapsulated into Zeolitic imidazolate framework-8(ZIF-8) nanoparticle and grafted with biotin-conjugated polyethylene glycol (CEL@ZIF-8@PEG-BIO). Comprehensive comparisons of the physicochemical properties and anticancer activities of CEL and CEL@ZIF-8@PEG-BIO were conducted. Our findings revealed that CEL@ZIF-8@PEG-BIO exhibited favorable characteristics, including hydrodynamic diameters of 234.5 nm, excellent water solubility, high drug loading (31.60% ± 2.85), encapsulation efficiency (60.52% ± 2.79), and minimal side effects. Furthermore, CEL@ZIF-8@PEG-BIO can release chemicals in response to an acidic micro-environment, which is more likely a tumor micro-environment. In vitro, studies showed that CEL@ZIF-8@BIO inhibited cell proliferation, led to mitochondrial membrane potential (MMP) decline, and generated reactive oxygen species in OC cells. Both in vitro and in vivo experiments indicated that CEL@ZIF-8@PEG-BIO enhanced anti-tumor activity against OC via up-regulated apoptosis-promoting biomarkers and rendered cancer cell apoptosis via the P38/JNK MAPK signaling pathway. In conclusion, we have successfully developed a novel drug delivery system (CEL@ZIF-8@PEG-BIO), resulting in significant improvements in both water solubility and anti-tumor efficacy thereby providing valuable insights for future clinical drug development.

20.
J Craniofac Surg ; 34(8): e788-e790, 2023.
Article in English | MEDLINE | ID: mdl-37595255

ABSTRACT

Orbital apex syndrome, a clinical disease that is uncommon and has a high fatality rate. Tumor, endocrine, and inflammatory variables are frequently responsible for its occurrence. The authors describe a 53-year-old Chinese man who was diagnosed with orbital apex syndrome and coupled type 2 diabetes mellitus and a fungus infestation. Treatment included nasal endoscopic orbital apical decompression, anti-infection, and adequate debridement. Except for inevitable optic nerve damage, postoperative proptosis and headache manifestations improved, and systemic infection was timely contained with no signs of recurrence or serious complications occurred. The orbital apex syndrome is difficult to treat, and soon as possible biopsy of the lesion, aggressive surgical decompression, and antifungal treatment seem to be effective ways to improve survival rates.


Subject(s)
Aspergillosis , Diabetes Mellitus, Type 2 , Exophthalmos , Male , Humans , Middle Aged , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/surgery , Aspergillosis/diagnosis , Aspergillosis/drug therapy , Aspergillosis/surgery , Exophthalmos/surgery , Antifungal Agents/therapeutic use , Decompression, Surgical , Orbit/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...