Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 413
Filter
1.
Anal Chim Acta ; 1303: 342519, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38609262

ABSTRACT

The gene editing technology represented by clustered rule-interspersed short palindromic repeats (CRISPR)/Cas9 has developed as a common tool in the field of biotechnology. Many gene-edited products in plant varieties have recently been commercialized. However, the rapid on-site visual detection of gene-edited products without instrumentation remains challenging. This study aimed to develop a novel and efficient method, termed the CRISPR/SpRY detection platform, for the rapid screening of CRISPR/Cas9-induced mutants based on CRISPR/SpRY-mediated in vitro cleavage using rice (Oryza sativa L.) samples genetically edited at the TGW locus as an example. We designed the workflow of the CRISPR/SpRY detection platform and conducted a feasibility assessment. Subsequently, we optimized the reaction system of CRISPR/SpRY, and developed a one-pot CRISPR/SpRY assay by integrating recombinase polymerase amplification (RPA). The sensitivity of the method was further verified using recombinant plasmids. The proposed method successfully identified various types of mutations, including insertions, deletions (indels), and nucleotide substitutions, with excellent sensitivity. Finally, the applicability of this method was validated using different rice samples. The entire process was completed in less than an hour, with a limit of detection as low as 1%. Compared with previous methods, our approach is simple to operate, instrumentation-free, cost-effective, and time-efficient. The primary significance lies in the liberation of our developed system from the limitations imposed using protospacer adjacent motif sequences. This expands the scope and versatility of the CRISPR-based detection platform, making it a promising and groundbreaking platform for detecting mutations induced by gene editing.


Subject(s)
Oryza , Oryza/genetics , CRISPR-Cas Systems/genetics , Gene Editing , Biological Assay , Biotechnology , RNA
2.
Proc Natl Acad Sci U S A ; 121(17): e2314201121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38635631

ABSTRACT

To effectively protect the host from viral infection while avoiding excessive immunopathology, the innate immune response must be tightly controlled. However, the precise regulation of antiviral innate immunity and the underlying mechanisms remain unclear. Here, we find that sirtuin3 (SIRT3) interacts with mitochondrial antiviral signaling protein (MAVS) to catalyze MAVS deacetylation at lysine residue 7 (K7), which promotes MAVS aggregation, as well as TANK-binding kinase I and IRF3 phosphorylation, resulting in increased MAVS activation and enhanced type I interferon signaling. Consistent with these findings, loss of Sirt3 in mice and zebrafish renders them more susceptible to viral infection compared to their wild-type (WT) siblings. However, Sirt3 and Sirt5 double-deficient mice exhibit the same viral susceptibility as their WT littermates, suggesting that loss of Sirt5 in Sirt3-deficient mice may counteract the increased viral susceptibility displayed in Sirt3-deficient mice. Thus, we not only demonstrate that SIRT3 positively regulates antiviral immunity in vitro and in vivo, likely via MAVS, but also uncover a previously unrecognized mechanism by which SIRT3 acts as an accelerator and SIRT5 as a brake to orchestrate antiviral innate immunity.


Subject(s)
Sirtuin 3 , Sirtuins , Virus Diseases , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Immunity, Innate , Lysine , Sirtuin 3/genetics , Sirtuins/genetics , Zebrafish , Zebrafish Proteins
3.
ACS Omega ; 9(12): 13714-13727, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559997

ABSTRACT

Herein, Cellulose-templated Zn1-XCuXO/Ag2O nanocomposites were prepared using biological renewable cellulose extracted from water hyacinth (Eichhornia crassipes). Cellulose-templated Cu-doped ZnO catalysts with different amounts of Cu as the dopants (1, 2, 3, and 4%) were prepared and denoted CZ-1, CZ-2, CZ-3, and CZ-4, respectively, for simplicity. The prepared catalysts were tested for the degradation of methylene blue (MB), and 2% Cu-doped ZnO (CZ-2) showed the best catalytic performance (82%), while the pure ZnO, CZ-1, CZ-3, and CZ-4 catalysts exhibited MB dye degradation efficiencies of 54, 63, 65, and 60%, respectively. The best catalyst (CZ-2) was chosen to further improve the degradation efficiency. Different amounts of AgNO3 (10, 15, 30, and 45 mg) were used for the deposition of Ag2O on the surface of CZ-2 and denoted CZA-10, CZA-15, CZA-30, and CZA-45, respectively. Among the composite catalysts, CZA-15 showed remarkable degradation efficiency and degraded 94% of MB, while the CZA-10, CZA-30, and CZA-45 catalysts showed 90, 81, and 79% degradation efficiencies, respectively, under visible light within 100 min of irradiation. The enhanced catalytic performance could be due to the smaller particle size, the higher electron and hole separation and charge transfer efficiencies, and the lower agglomeration in the composite catalyst system. The results also demonstrated that the Cu-doped ZnO prepared with cellulose as a template, followed by the optimum amount of Ag2O deposition, could have promising applications in the degradation of organic pollutants.

4.
Nat Commun ; 15(1): 2858, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570522

ABSTRACT

Nutrient enrichment is a major global change component that often disrupts the relationship between aboveground biodiversity and ecosystem functions by promoting species dominance, altering trophic interactions, and reducing ecosystem stability. Emerging evidence indicates that nutrient enrichment also reduces soil biodiversity and weakens the relationship between belowground biodiversity and ecosystem functions, but the underlying mechanisms remain largely unclear. Here, we explore the effects of nutrient enrichment on soil properties, soil biodiversity, and multiple ecosystem functions through a 13-year field experiment. We show that soil acidification induced by nutrient enrichment, rather than changes in mineral nutrient and carbon (C) availability, is the primary factor negatively affecting the relationship between soil diversity and ecosystem multifunctionality. Nitrogen and phosphorus additions significantly reduce soil pH, diversity of bacteria, fungi and nematodes, as well as an array of ecosystem functions related to C and nutrient cycling. Effects of nutrient enrichment on microbial diversity also have negative consequences at higher trophic levels on the diversity of microbivorous nematodes. These results indicate that nutrient-induced acidification can cascade up its impacts along the soil food webs and influence ecosystem functioning, providing novel insight into the mechanisms through which nutrient enrichment influences soil community and ecosystem properties.


Subject(s)
Ecosystem , Soil , Soil/chemistry , Biodiversity , Soil Microbiology , Nutrients , Hydrogen-Ion Concentration
5.
Nat Commun ; 15(1): 3533, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670937

ABSTRACT

Oxygen is essential for aerobic organisms, but little is known about its role in antiviral immunity. Here, we report that during responses to viral infection, hypoxic conditions repress antiviral-responsive genes independently of HIF signaling. EGLN1 is identified as a key mediator of the oxygen enhancement of antiviral innate immune responses. Under sufficient oxygen conditions, EGLN1 retains its prolyl hydroxylase activity to catalyze the hydroxylation of IRF3 at proline 10. This modification enhances IRF3 phosphorylation, dimerization and nuclear translocation, leading to subsequent IRF3 activation. Furthermore, mice and zebrafish with Egln1 deletion, treatment with the EGLN inhibitor FG4592, or mice carrying an Irf3 P10A mutation are more susceptible to viral infections. These findings not only reveal a direct link between oxygen and antiviral responses, but also provide insight into the mechanisms by which oxygen regulates innate immunity.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases , Immunity, Innate , Interferon Regulatory Factor-3 , Oxygen , Proline , Zebrafish , Animals , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Interferon Regulatory Factor-3/metabolism , Hydroxylation , Humans , Proline/metabolism , Mice , Oxygen/metabolism , HEK293 Cells , Phosphorylation , Mice, Knockout , Signal Transduction , Mice, Inbred C57BL
6.
Biosensors (Basel) ; 14(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38667193

ABSTRACT

RNA is an important information and functional molecule. It can respond to the regulation of life processes and is also a key molecule in gene expression and regulation. Therefore, RNA detection technology has been widely used in many fields, especially in disease diagnosis, medical research, genetic engineering and other fields. However, the current RT-qPCR for RNA detection is complex, costly and requires the support of professional technicians, resulting in it not having great potential for rapid application in the field. PCR-free techniques are the most attractive alternative. They are a low-cost, simple operation method and do not require the support of large instruments, providing a new concept for the development of new RNA detection methods. This article reviews current PCR-free methods, overviews reported RNA biosensors based on electrochemistry, SPR, microfluidics, nanomaterials and CRISPR, and discusses their challenges and future research prospects in RNA detection.


Subject(s)
Biosensing Techniques , RNA , RNA/analysis , Humans , Electrochemical Techniques , Polymerase Chain Reaction/methods , Nanostructures , Surface Plasmon Resonance , Microfluidics
7.
Chin Med ; 19(1): 50, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519956

ABSTRACT

The application of network formulaology and network pharmacology has significantly advanced the scientific understanding of traditional Chinese medicine (TCM) treatment mechanisms in disease. The field of herbal biology is experiencing a surge in data generation. However, researchers are encountering challenges due to the fragmented nature of the data and the reliance on programming tools for data analysis. We have developed TCMNPAS, a comprehensive analysis platform that integrates network formularology and network pharmacology. This platform is designed to investigate in-depth the compatibility characteristics of TCM formulas and their potential molecular mechanisms. TCMNPAS incorporates multiple resources and offers a range of functions designed for automated analysis implementation, including prescription mining, molecular docking, network pharmacology analysis, and visualization. These functions enable researchers to analyze and obtain core herbs and core formulas from herbal prescription data through prescription mining. Additionally, TCMNPAS facilitates virtual screening of active compounds in TCM and its formulas through batch molecular docking, allowing for the rapid construction and analysis of networks associated with "herb-compound-target-pathway" and disease targets. Built upon the integrated analysis concept of network formulaology and network pharmacology, TCMNPAS enables quick point-and-click completion of network-based association analysis, spanning from core formula mining from clinical data to the exploration of therapeutic targets for disease treatment. TCMNPAS serves as a powerful platform for uncovering the combinatorial rules and mechanism of TCM formulas holistically. We distribute TCMNPAS within an open-source R package at GitHub ( https://github.com/yangpluszhu/tcmnpas ), and the project is freely available at http://54.223.75.62:3838/ .

8.
Langmuir ; 40(11): 5968-5977, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38441876

ABSTRACT

Silicone elastomers are widely used in many industrial applications, including coatings, adhesives, and sealants. Room-temperature vulcanized (RTV) silicone, a major subcategory of silicone elastomers, undergoes molecular structural transformations during condensation curing, which affect their mechanical, thermal, and chemical properties. The role of reactive hydroxyl (-OH) groups in the curing reaction of RTV silicone is crucial but not well understood, particularly when multiple sources of hydroxyl groups are present in a formulated product. This work aims to elucidate the interfacial molecular structural changes and origins of interfacial reactive hydroxyl groups in RTV silicone during curing, focusing on the methoxy groups at interfaces and their relationship to adhesion. Sum frequency generation (SFG) vibrational spectroscopy is an in situ nondestructive technique used in this study to investigate the interfacial molecular structure of select RTV formulations at the buried interface at different levels of cure. The primary sources of hydroxyl groups required for interfacial reactions in the initial curing stage are found to be those on the substrate surface rather than those from the ingress of ambient moisture. The silylation treatment of silica substrates eliminates interfacial hydroxyl groups, which greatly impact the silicone interfacial behavior and properties (e.g., adhesion). This study establishes the correlation between interfacial molecular structural changes in RTV silicones and their effect on adhesion strength. It also highlights the power of SFG spectroscopy as a unique tool for studying chemical and structural changes at RTV silicone/substrate interface in situ and in real time during curing. This work provides valuable insights into the interfacial chemistry of RTV silicone and its implications for material performance and application development, aiding in the development of improved silicone adhesives.

9.
Anal Chem ; 96(14): 5471-5477, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38551977

ABSTRACT

Current research endeavors have focused on the combination of various isothermal nucleic acid amplification methods with CRISPR/Cas systems, aiming to establish a more sensitive and reliable molecular diagnostic approach. Nevertheless, most assays adopt a two-step procedure, complicating manual operations and heightening the risk of contamination. Efforts to amalgamate both assays into a single-step procedure have faced challenges due to their inherent incompatibility. Furthermore, the presence of the protospacer adjacent motif (PAM) motif (e.g., TTN or TTTN) in the target double-strand DNA (dsDNA) is an essential prerequisite for the activation of the Cas12-based method. This requirement imposes constraints on crRNA selection. To overcome such limitations, we have developed a novel PAM-free one-step asymmetric recombinase polymerase amplification (RPA) coupled with a CRISPR/Cas12b assay (OAR-CRISPR). This method innovatively merges asymmetric RPA, generating single-stranded DNA (ssDNA) amenable to CRISPR RNA binding without the limitations of the PAM site. Importantly, the single-strand cleavage by PAM-free crRNA does not interfere with the RPA amplification process, significantly reducing the overall detection times. The OAR-CRISPR assay demonstrates sensitivity comparable to that of qPCR but achieves results in a quarter of the time required by the latter method. Additionally, our OAR-CRISPR assay allows the naked-eye detection of as few as 60 copies/µL DNA within 8 min. This innovation marks the first integration of an asymmetric RPA into one-step CRISPR-based assays. These advancements not only support the progression of one-step CRISPR/Cas12-based detection but also open new avenues for the development of detection methods capable of targeting a wide range of DNA targets.


Subject(s)
CRISPR-Cas Systems , Recombinases , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Nucleotidyltransferases , DNA/genetics , DNA, Single-Stranded , DNA, Complementary , Nucleic Acid Amplification Techniques
10.
Gene ; 893: 147935, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38381506

ABSTRACT

Hypoxia, an inadequate supply of tissue oxygen tension, has been reported to induce apoptosis of spermatogenic cells and is associated with male infertility. Neddylation, a post-translational modification similar to ubiquitination, has been shown to be involved in the hypoxia stress response. However, the functions of neddylation in hypoxia-induced apoptosis of spermatogenic cells and its association with male infertility remain largely unexplored. In this study, aiming to explore the role of neddylation in male infertility, we used the specific neddylation inhibitor MLN4924 for treatment in mouse type B spermatogonia GC-2 cells. Our results showed that MLN4924 had no apparent effect on GC-2 cell apoptosis under normoxia, but significantly increased apoptotic cells under hypoxia. Transcriptomic analysis and qPCR assay confirmed that MLN4924 could suppress the expression of hypoxia target genes in GC-2 cells under hypoxia. In addition, MLN4924 could enhance the induction of intracellular and mitochondrial reactive oxygen species (ROS) under hypoxia. These results indicate that the neddylation inhibitor MLN4924 potentiates hypoxia-induced apoptosis of mouse type B spermatogonia GC-2 cells, and neddylation may play an important role in promoting spermatogenic cells to adapt to hypoxia stress.


Subject(s)
Cyclopentanes , Infertility, Male , Pyrimidines , Spermatogonia , Male , Animals , Mice , Humans , Apoptosis , Hypoxia
11.
Acta Ophthalmol ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334238

ABSTRACT

PURPOSE: To evaluate the performance of intraocular lens (IOL) calculation formulas and the effect of anterior chamber depth (ACD), axial length (AL) and lens thickness (LT) on the prediction accuracy in shallow ACD eyes. METHODS: This retrospective, consecutive case-series study included 648 eyes of 648 patients with an ACD < 3.0 mm who underwent phacoemulsification and IOL implantation. Eleven formulas were evaluated: Barrett Universal II (BUII), Emmetropia Verifying Optical (EVO) 2.0, Hill-Radial Basis Function (RBF) 3.0, Hoffer QST, Kane, Olsen, Pearl-DGS and traditional formulas (Haigis, Hoffer Q, Holladay 1 and SRK/T). Subgroup analysis was performed based on ACD, AL and LT. RESULTS: Overall, the Hoffer QST and Kane showed no systematic bias. The Kane, EVO 2.0, Hill-RBF 3.0 and Hoffer QST had relatively lower mean absolute error and higher percentages of prediction error within ±0.5 D. For the ACD of 2.5-3.0 mm and AL < 22.0 mm subgroup, the Pearl-DGS exhibited the lowest MAE (0.45 D) and MedAE (0.41 D). Most formulas had a significant myopic bias (-0.43 to -0.18 D, p < 0.05) in the LT < 4.3 mm subgroup and a significant hyperopic bias (0.09-0.29 D, p < 0.05) in the LT ≥ 5.1 mm subgroup. CONCLUSION: The Kane and Hoffer QST were recommended for shallow ACD eyes. In eyes with an ACD between 2.5 and 3.0 mm and a short AL, the Pearl-DGS showed excellent performance. Clinicians need to fine-tune the target refraction according to LT in shallow ACD eyes.

12.
BMJ Open ; 14(2): e074573, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388507

ABSTRACT

OBJECTIVES: Studies have shown that good cognitive function can moderate the relationship between non-exercise physical activity (NEPA) and activities of daily living (ADLs) disability to some extent, and this study mainly explores the relationship between ADL and NEPA and cognitive function in Chinese older adults. SETTING AND PARTICIPANTS: Data came from a nationally representative sample of 2471 Chinese old adults (aged 65+) from the 2011, 2014 and 2018 waves of the Chinese Longitudinal Healthy Longevity Survey. PRIMARY AND SECONDARY OUTCOME MEASURES: A cross-lagged panel model combined with mediation analysis was used to determine the relationship between ADL and NEPA and the mediating effect of cognitive function on the ascertained ADL-NEPA relationship. RESULTS: The more frequently people over the age of 65 in China participate in NEPA, the lower the risk of ADL disability. Cognitive function partially mediated this expected relationship, accounting for 9.09% of the total NEPA effect on ADL. CONCLUSION: Participating in more NEPA could reduce the risk of ADL disability, and participating in NEPA may reduce the risk of ADL disability through cognitive function to some extent.


Subject(s)
Activities of Daily Living , Disabled Persons , Humans , Aged , Longevity , Longitudinal Studies , Exercise , China
13.
Theranostics ; 14(3): 1049-1064, 2024.
Article in English | MEDLINE | ID: mdl-38250043

ABSTRACT

Rationale: Macrophage-associated inflammation and keratinocytes excessive proliferation and inflammatory cytokines secretion induced by stimulation play an important role in the progression of psoriasiform dermatitis. However, how these two types of cells communicate remains obscure. Methods: We induced a mouse model with experimental psoriasiform dermatitis by Imiquimod (IMQ). To investigate whether damaged keratinocytes promote macrophage polarization and accelerate skin lesions by releasing extracellular vesicle (EV), purified EV were isolated from the primary epidermis of 5-day IMQ-induced psoriasiform dermatitis model mice, and then fluorescence-labeled the EV with PKH67. The EV was injected into the skin of mice treated with IMQ or vehicle 2 days in situ. In addition, we established a co-culture system of the human monocytic cell line (THP-1) and HaCaT, and THP-1/HaCaT conditioned media culture model in vitro respectively. Subsequently, we evaluated the effect of Leucine-rich α-2-glycoprotein 1 (LRG1)-enriched EV on macrophage activation. Results: We demonstrated macrophages can significantly promote keratinocyte inflammation and macrophage polarization may be mediated by intercellular communication with keratinocytes. Interestingly, IMQ-induced 5-day, keratinocyte-derived EV recruited macrophage and enhanced the progression of skin lesions. Similar to results in vivo, EV released from M5-treated HaCaT significantly promotes Interleukin 1ß (IL-1ß) and Tumor necrosis factor α (TNF-α) expression of THP-1 cells. Importantly, we found that LRG1-enriched EV regulates macrophages via TGF beta Receptor 1 (TGFßR1) dependent process. Conclusion: Our findings indicated a novel mechanism for promoting psoriasiform dermatitis, which could be a potential therapeutic target.


Subject(s)
Dermatitis , Extracellular Vesicles , Humans , Animals , Mice , Keratinocytes , Macrophages , Glycoproteins , Inflammation
14.
Org Biomol Chem ; 22(7): 1378-1385, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38275979

ABSTRACT

A simple and efficient transition-metal/photocatalyst-free visible-light-driven one-pot three-component reaction between thianthrenium salts, carbon disulfide and amines under an air atmosphere for the preparation of biologically relevant S-aryl dithiocarbamates is developed. This methodology is robust and scalable, and exhibits a broad substrate scope and excellent functional group tolerance. Of note, a wide range of primary aliphatic amines bearing different groups are suitable for this strategy. The synthetic utility was further demonstrated by a two-step one-pot multi-component reaction and photo-flow decagram-scale synthesis. Preliminary mechanistic studies suggest that the association of the dithiocarbamate anion with thianthrenium salts formed an electron donor-acceptor complex, which upon excitation with visible light produced an aryl radical via single-electron transfer.

15.
Acta Ophthalmol ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38235601

ABSTRACT

PURPOSE: To determine whether correcting the axial length (AL) measurement error of the IOLMaster 700 could improve the refractive prediction accuracy in silicone oil-filled eyes. METHODS: This study included 265 cataract patients (265 eyes) with silicone oil tamponade who were scheduled for phacoemulsification with intraocular lens (IOL) implantation. The performances of various formulas, including Barrett Universal II, Emmetropia Verifying Optical, Hoffer-QST, Kane, Ladas Super Formula, Pearl-DGS, Radial Basis Function and traditional formulas (Haigis, Hoffer Q, Holladay 1 and SRK/T), were evaluated. The refractive prediction errors (PE) calculated with measured AL (ALmeas ) and corrected AL with silicone oil adjustment (SOAL ) were compared. Subgroup analysis was performed based on the ALmeas (<23 mm; 23-26 mm; ≥26 mm). RESULTS: Using SOAL significantly reduced the hyperopic PE of formulas when compared to ALmeas (-0.05 to 0.17 D vs 0.15 to 0.38 D, p < 0.001). After applying AL correction, all formulas showed a lower mean absolute PE (0.47-0.57 D vs 0.50-0.69 D). The percentage of eyes within ±1.0 D of PE increased from 84.91%-88.68% to 89.81%-91.32% for new formulas and from 78.11%-83.40% to 85.66%-88.68% for traditional formulas, with the use of SOAL . Subgroup analysis showed that the majority of formulas with SOAL in prediction accuracy for eyes with an AL ≥26 mm (p < 0.05). CONCLUSIONS: The refractive prediction accuracy in silicone oil-filled eyes was improved by correcting the AL measurement error of the IOLMaster 700, especially for long eyes.

16.
Article in English | MEDLINE | ID: mdl-38197993

ABSTRACT

PURPOSE: To investigate the effect of posterior keratometry (PK) on the accuracy of 10 intraocular lens (IOL) power calculation formulas using standard keratometry (K) and total keratometry (TK). METHODS: This is a retrospective consecutive case-series study. The IOL power was calculated using K and TK measured by IOLMaster 700 in 6 new-generation formulas (Barrett Universal II, Emmetropia Verifying Optical (EVO) 2.0, RBF Calculator 3.0, Hoffer QST, Kane, and Ladas Super Formula) and 4 traditional formulas (Haigis, Hoffer Q, Holladay 1, and SRK/T). The arithmetic prediction error (PE) and mean absolute PE (MAE) were evaluated. The locally-weighted scatterplot smoothing was performed to assess the relationship between PE and PK. RESULTS: A total of 576 patients (576 eyes) who underwent cataract surgery were included. Compared with using K, all formulas using TK showed a hyperopic shift in the whole group. Specifically, for eyes with PK exceeding -5.90 D, all formulas using TK exhibited a hyperopic shift (all P < 0.001), while eyes with PK less than -5.90 D showed a myopic shift (all P < 0.001). The MAE of new-generation formulas calculated with TK and K showed no statistical differences, while the MAE of traditional formulas with TK was larger (TK: 0.34 ~ 0.43 D; K: 0.33 ~ 0.42 D, all P < 0.05). CONCLUSIONS: The prediction bias of formulas with TK increased as PK deviated from -5.90 D. TK did not improve the prediction accuracy of new-generation formulas, and even performed worse in traditional formulas.

17.
Mar Pollut Bull ; 199: 115963, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171159

ABSTRACT

Marine debris (MD) poses a significant threat to global coastal ecosystems around the world, necessitating effective strategies for its collection and removal. As a new type of fixed collection device, the duck-mouth type marine debris collection device (MDCD) consists primarily of two components: a central collection system and floating fences which are positioned at a certain angle and open towards the outer bay located on both sides of it. This paper aims to establish a coupling drift model based on hydrodynamic model to study the performance of duck-mouth type MDCD, verify its effectiveness. Before simulation, the model was fully validated. The results demonstrate that wind has the greatest influence on MD movement, as the direction of the wind directly determines the movement direction of the debris. It was observed that only under onshore wind conditions did the MD move towards the bay when the duck-mouth type MDCD can effectively collect MD, which moves along the barrier net towards the central trash bin and eventually be fully collected.


Subject(s)
Environmental Monitoring , Animals , Computer Simulation , Ecosystem , Environmental Monitoring/methods , Mouth , Plastics , Waste Products/analysis
18.
Sci Rep ; 14(1): 2314, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281984

ABSTRACT

The global concern over water pollution caused by organic pollutants such as methylene blue (MB) and other dyes has reached a critical level. Herein, the Allium cepa L. peel extract was utilized to fabricate copper oxide (CuO) nanoparticles. The CuO was combined with MgAl-layered double hydroxides (MgAl-LDHs) via a co-precipitation method with varying weight ratios of the CuO/LDHs. The composite catalysts were characterized and tested for the degradation of MB dye. The CuO/MgAl-LDH (1:2) showed the highest photocatalytic performance and achieved 99.20% MB degradation. However, only 90.03, 85.30, 71.87, and 35.53% MB dye was degraded with CuO/MgAl-LDHs (1:1), CuO/MgAl-LDHs (2:1), CuO, and MgAl-LDHs catalysts, respectively. Furthermore, a pseudo-first-order rate constant of the CuO/MgAl-LDHs (1:2) was 0.03141 min-1 while the rate constants for CuO and MgAl-LDHs were 0.0156 and 0.0052 min-1, respectively. The results demonstrated that the composite catalysts exhibited an improved catalytic performance than the pristine CuO and MgAl-LDHs. The higher photocatalytic performances of composite catalysts may be due to the uniform distribution of CuO nanoparticles into the LDH matrix, the higher surface area, and the lower electron and hole recombination rates. Therefore, the CuO/MgAl-LDHs composite catalyst can be one of the candidates used in environmental remediation.

19.
Faraday Discuss ; 250(0): 263-270, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-37947139

ABSTRACT

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a widely used conductive polymer in organic light-emitting devices. However, its strong acidity and fluorescence quenching effect seriously affect the overall device performance. We report a cost-effective method to address the above concerns by diluting PEDOT:PSS with deionized water, which effectively reduced the film thickness and the acidity. Therefore, the fluorescence quenching occurring at the interface was alleviated. Using the modified PEDOT:PSS as the hole injection layer, the external quantum efficiency of the device could be effectively improved by a factor of 81%, reaching a considerably higher value of 23.5%, compared with the device consisting of the original PEDOT:PSS solution used as received.

20.
Mol Cell Biochem ; 479(4): 743-759, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37171723

ABSTRACT

Fibrotic cataract, including anterior subcapsular cataract (ASC) and posterior capsule opacification, always lead to visual impairment. Epithelial-mesenchymal transition (EMT) is a well-known event that causes phenotypic alterations in lens epithelial cells (LECs) during lens fibrosis. Accumulating studies have demonstrated that microRNAs are important regulators of EMT and fibrosis. However, the evidence explaining how microRNAs modulate the behavior and alter the cellular phenotypes of the lens epithelium in fibrotic cataract is insufficient. In this study, we found that hsa-let-7c-3p is downregulated in LECs in human ASC in vivo as well as in TGFß2-induced EMT in vitro, indicating that hsa-let-7c-3p may participate in modulating the profibrotic processes in the lens. We then demonstrated that overexpression of hsa-let-7c-3p markedly suppressed human LEC proliferation and migration and attenuated TGFß2-induced EMT and injury-induced ASC in a mouse model. In addition, hsa-let-7c-3p mediated lens fibrosis by directly targeting the CDH11 gene, which encodes cadherin-11 protein, an important mediator in the EMT signaling pathway. It decreased cadherin-11 protein expression at the posttranscriptional level but not at the transcriptional level by binding to a specific site in the 3-untranslated region (3'-UTR) of CDH11 mRNA. Moreover, blockade of cadherin-11 expression with a specific short hairpin RNA reversed TGFß2-induced EMT in LECs in vitro. Collectively, these data demonstrated that hsa-let-7c-3p plays a clear role in attenuating ASC development and may be a novel candidate therapeutic for halting fibrosis and maintaining vision.


Subject(s)
Cadherins , Capsule Opacification , Cataract , Lens, Crystalline , MicroRNAs , Animals , Humans , Mice , Capsule Opacification/genetics , Capsule Opacification/metabolism , Cataract/genetics , Cataract/metabolism , Cataract/pathology , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Fibrosis , Lens, Crystalline/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...