Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Nutr ; 43(1): 52-64, 2024 01.
Article in English | MEDLINE | ID: mdl-38011754

ABSTRACT

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is known to progress due to the impact of long non-coding RNAs (lncRNAs), which have been linked to autophagy, pyroptosis, and fibrosis in NASH cells. However, the exact mechanisms underpinning these processes remain unclear. This study focuses on the role of lncRNA MIR22HG (MIR22HG) in NASH. METHODS: The expression of differentially expressed lncRNA was analyzed by RNA sequencing. Mouse models of NASH induced by MCD and HFD were validated. The expression of MIR22HG in HFD and MCD mouse liver tissue samples, FFA cells constructed with HepG2 and Huh7, and human liver tissue samples were detected by QRT-PCR. In addition, We used RNA immunoprecipitation, luciferase reporting, miRNA transfection, plasmid construction, immunofluorescence, Western blot, qRT-PCR, ELISA, and hybridization techniques to elucidate the relationship between MIR22HG, microRNA-9-3p (miR-9-3p), and IGF1. In addition, the mechanism of MIR22HG and PTEN/AKT was explored by Western blot analysis. RESULTS: RNA-seq found that 3751 mRNAs and 23 lncRNAs were differentially expressed, which constituted a lncRNA-miRNA-mRNA regulatory network. Studies demonstrated the downregulation of MIR22HG in HFD and MCD mouse liver tissue samples (p = 1.00E-04 and p = 4.6E-03). Our results showed that overexpression of MIR22HG promoted autophagy and inhibited pyroptosis and fibrosis through the miR-9-3p/IGF1 pathway, thus slowing the occurrence and development of NASH. Further, we observed a low expression of MIR22HG and IGF1, but a high expression of miR-9-3p in NASH patients, a finding in alignment with our in vivo and in vitro results. CONCLUSION: Using MIR22HG as a biomarker and therapeutic target for NASH patients, we found that it plays a pivotal role in detecting autophagy, pyroptosis, and fibrosis through the ceRNA pathway.


Subject(s)
MicroRNAs , Non-alcoholic Fatty Liver Disease , RNA, Long Noncoding , Animals , Humans , Mice , Autophagy/genetics , Fibrosis , Insulin-Like Growth Factor I/metabolism , MicroRNAs/genetics , Non-alcoholic Fatty Liver Disease/genetics , Pyroptosis , RNA, Competitive Endogenous , RNA, Long Noncoding/genetics
2.
Front Immunol ; 14: 1204338, 2023.
Article in English | MEDLINE | ID: mdl-37680641

ABSTRACT

Background: Hepatocellular carcinoma (HCC) comprises several distinct molecular subtypes with varying prognostic implications. However, a comprehensive analysis of a prognostic signature for HCC based on molecular subtypes related to disulfidptosis and glycolysis, as well as associated metabolomics and the immune microenvironment, is yet to be fully explored. Methods: Based on the differences in the expression of disulfide-related glycolytic genes (DRGGs), patients with HCC were divided into different subtypes by consensus clustering. Establish and verify a risk prognosis signature. Finally, the expression level of the key gene SLCO1B1 in the signature was evaluated using immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR) in HCC. The association between this gene and immune cells was explored using multiplex immunofluorescence. The biological functions of the cell counting kit-8, wound healing, and colony formation assays were studied. Results: Different subtypes of patients have specific clinicopathological features, prognosis and immune microenvironment. We identified seven valuable genes and constructed a risk-prognosis signature. Analysis of the risk score revealed that compared to the high-risk group, the low-risk group had a better prognosis, higher immune scores, and more abundant immune-related pathways, consistent with the tumor subtypes. Furthermore, IHC and qRT-PCR analyses showed decreased expression of SLCO1B1 in HCC tissues. Functional experiments revealed that SLCO1B1 overexpression inhibited the proliferation, migration, and invasion of HCC cells. Conclusion: We developed a prognostic signature that can assist clinicians in predicting the overall survival of patients with HCC and provides a reference value for targeted therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Prognosis , Biological Assay , Glycolysis/genetics , Tumor Microenvironment/genetics , Liver-Specific Organic Anion Transporter 1
3.
Biochem Biophys Res Commun ; 679: 90-97, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37677982

ABSTRACT

The objective of this research was to investigate whether or if there is a connection between genes associated with pyroptosis and novel approaches to the diagnosis and treatment of NASH. The mRNA expression patterns of the gene expression dataset GSE135251 integrated (GEO) database were analyzed, and a total of 60 genes related to scorch death were extracted and included in the PubMed database. Methods from the field of bioinformatics were utilized to investigate the degrees to which differentially expressed genes and pyroptosis-related genes differed between NASH patients and healthy controls. As a result of this, the Centre for Genetic Research has now come around to accepting enrichment and PPI interaction analyses. GSE89632 and NASH models were evaluated, trained, qualified, and validated by 18 of the links between the expression of hub genes. PLCG1 expression raised NASH in the progress of the disease. PLCG1 expression levels were then validated by Western Blot and qRT-PCR in FFA-induced HepG2 cells and mouse liver tissues. An analysis of mRNA expression of cleaved-caspase 3, GSDMD, and GSDME in NASH models. In addition, the PLCG1based diagnostic model successfully discriminated NASH from normal samples. Collectively, our results imply that PLCG1 is significantly associated with NASH and may be a biomarker for pyroptosis-related disease.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Humans , Non-alcoholic Fatty Liver Disease/genetics , Pyroptosis/genetics , Blotting, Western , Computational Biology , RNA, Messenger/genetics
4.
Lipids Health Dis ; 22(1): 22, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36759837

ABSTRACT

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is one of the most frequent liver diseases at present, and there is no radical treatment. The consequences of a variety of ginsenoside compounds on this situation have before been reported, however, the specific effect on the monomeric ginsenoside Rg1 (Rg1) and its associated underlying molecular mechanism stay unknown. MATERIAL AND METHODS: In vitro, the cell models were constructed by exposing free fatty acids (FFAs) to HepG2 cells. A methionine and choline deficiency (MCD)-induced NASH mouse model was also established over 5-6 weeks of treatment. Rg1 is a traditional Chinese medicine monomer. These NASH models were treated with Rg1 and analyzed by qRT-PCR, Western Blot, sequencing, Oil red O staining, immunofluorescence, enzyme activity, HE staining, ELISA, double luciferase reporter assay, and immunohistochemistry. RESULTS: Overexpression of ATG2B, an autophagy-related protein, attenuated lipid droplet accumulation and reduces ALT, AST, inflammatory cytokines, hydrogen peroxide, and pyroptosis in established mouse and cellular models of NASH and increased levels of ATP and autophagy. The binding sites of miR-375-3p and ATG2B were verified by bioinformatic prediction and a dual-luciferase reporter gene. Knockdown of miR-375-3p promoted autophagy and inhibited pyroptosis. ATG2B knockdown substantially attenuated the impact of miR-375-3p on NASH. Rg1 appears to regulate the occurrence and development of NASH inflammation through miR-375-3p and ATG2B in vitro and in vivo, and is regulated by PTEN-AKT pathway. CONCLUSIONS: This study showed that Rg1 participates in autophagy and pyroptosis through the miR-375-3p/ATG2B/PTEN-AKT pathway, thereby alleviating the occurrence and development of NASH, for that reason revealing Rg1 as a candidate drug for NASH.


Subject(s)
Ginsenosides , MicroRNAs , Non-alcoholic Fatty Liver Disease , Mice , Animals , Pyroptosis , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Ginsenosides/pharmacology , Proto-Oncogene Proteins c-akt/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Autophagy/genetics
5.
Tohoku J Exp Med ; 257(4): 315-326, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35644544

ABSTRACT

Multiple myeloma (MM) is a common hematological malignancy. Bortezomib (BTZ) is a traditional medicine for MM treatment, but there are limitations for current treatment methods. Trifluoperazine (TFP) is a clinical drug for acute and chronic psychosis therapy. Lately, researchers have found that TFP can suppress tumor growth in many cancers. We attempted to study the effects of BTZ and TFP on MM in vivo and in vitro. We concentrated on the individual and combined impact of BTZ and TFP on the proliferation and apoptosis of MM cells via Cell Counting kit-8 assay, EdU assay, western blot, and flow cytometry. We found that combination therapy has a strong synergistic impact on MM cells. Combination therapy could induce cell arrest during G2/M phase and induce apoptosis in MM cells. Meanwhile, BTZ combined with TFP could play a better role in the anti-MM effect in vivo through MM.1s xenograft tumor models. Furthermore, we explored the mechanism of TFP-induced apoptosis in MM, and we noticed that TFP might induce MM apoptosis by inhibiting p-P38 MAPK/NUPR1. In summary, our findings suggest that TFP could synergistically enhance the BTZ-induced anti-cancer effect in multiple myeloma, which might be a promising therapeutic strategy for MM treatment.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bortezomib/pharmacology , Bortezomib/therapeutic use , Cell Line, Tumor , Cell Proliferation , Humans , Multiple Myeloma/drug therapy , Neoplasm Proteins/metabolism , Trifluoperazine/pharmacology , Trifluoperazine/therapeutic use , p38 Mitogen-Activated Protein Kinases/metabolism
6.
FEBS Open Bio ; 11(2): 519-528, 2021 02.
Article in English | MEDLINE | ID: mdl-33332746

ABSTRACT

Multiple myeloma (MM) is a heterogeneous disease with poor prognosis. Increasing evidence has revealed that microRNAs (miRNAs) are strongly associated with the pathogenesis and progression of MM. Here, we investigated the role of microRNA-637 (miR-637) in MM to identify potential therapeutic targets. We measured the expression of miR-637 in bone marrow samples of MM patients and MM cell lines by quantitative real-time PCR and western blot. The effect of miR-637 on proliferation and apoptosis of MM primary cells was also investigated. Analyses of four bioinformatics databases showed that miR-637 is associated with nuclear protein 1 (NUPR1) in MM cells, which was confirmed by luciferase reporter assay. We found that the overexpression of miR-637 suppressed the development of MM. miR-637 mimics increased the levels of Bax, cleaved caspase 3, and P62, and decreased the levels of Bcl2 and LC3. Additionally, luciferase reporter assays were performed to demonstrate that NUPR1 is the main target of miR-637 in MM cells. Overexpression of NUPR1 reversed the effects of miR-637 mimics in MM cells. Our results suggest that miR-637 inhibits cell proliferation and autophagy, and promotes apoptosis in MM cells by targeting NUPR1. Our findings also suggest that miR-637 may have potential as a novel molecular therapeutic target for MM treatment.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Multiple Myeloma/genetics , Neoplasm Proteins/genetics , Adult , Aged , Apoptosis/drug effects , Apoptosis/genetics , Autophagy/drug effects , Autophagy/genetics , Bone Marrow/pathology , Case-Control Studies , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Female , Healthy Volunteers , Humans , Male , MicroRNAs/agonists , Middle Aged , Multiple Myeloma/pathology , Young Adult
7.
FEBS Open Bio ; 10(10): 2097-2106, 2020 10.
Article in English | MEDLINE | ID: mdl-32810364

ABSTRACT

Multiple myeloma (MM) is the second most common hematologic malignancy of immunoglobulin-secreting plasma cells. Recent modern combination therapies have improved survival rates, but many patients develop resistance to novel drugs, leading to relapse. Trifluoperazine (TFP), a typical antipsychotic drug, has been reported to exert antitumor effects by targeting various pathways. Thus far, the role of TFP in MM has not been elucidated. In the current study, we demonstrated that TFP inhibited cell growth and autophagy activity but induced apoptosis of U266 and RPMI 8226 MM cells. Furthermore, cotreatment of these cell lines with TFP and rapamycin, a potent autophagy inducer, reduced cell apoptosis compared with TFP treatment alone. We also found that TFP inhibited nuclear protein 1 (NUPR1) expression. In the presence of TFP, cells stably overexpressing NUPR1 showed a higher viability than cells treated with the nonspecific control. Autophagy suppression and apoptosis induction caused by TFP were also reversed in MM cells upon NUPR1 overexpression. Overall, our results indicate that in the context of MM, TFP targets NUPR1, inhibiting cell growth and inducing apoptosis by autophagy inhibition. Our results could contribute toward efforts for the development of more effective therapies for MM to be tested in future clinical trials.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Multiple Myeloma/metabolism , Neoplasm Proteins/metabolism , Trifluoperazine/pharmacology , Apoptosis/drug effects , Apoptosis/physiology , Autophagy/drug effects , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , China , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Neoplasm Proteins/genetics , Sirolimus/pharmacology , Trifluoperazine/metabolism
8.
DNA Cell Biol ; 39(3): 368-378, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31971825

ABSTRACT

Nuclear protein 1 (NUPR1) is a stress-related small molecule and plays important roles in various tumors, including multiple myeloma (MM). Autophagy is essential for maintaining cellular homoeostasis in response to stress and, together with apoptosis, determines cell fate. Previous studies indicate that NUPR1 is involved in cancer progression of MM, but the underlying mechanisms have not been elucidated. In this study, we confirmed that NUPR1 and basal autophagy markers were highly expressed in the bone marrow of MM patients. The overexpression of NUPR1 was correlated with staging (both by Revised International Staging System [RISS] and Durie-Salmon [D-S] Staging System), levels of hemoglobin and calcium, and bone marrow plasma cell ratio in the MM patients. NUPR1 silencing reduced autophagy activities and induced apoptosis in U266 and RPMI 8226. We further observed a decrease in NUPR1 silencing-induced apoptosis in the presence of rapamycin, while an increase in apoptosis after chloroquine and 3-methyladenine treatment. Analysis of the mechanism indicated that PI3K/AKT/mTOR pathway was involved in autophagy-mediated apoptosis upon NUPR1 knockdown. In summary, our results demonstrate that NUPR1 silencing suppresses autophagy activities and induces autophagy-mediated apoptosis in MM cells through the PI3K/AKT/mTOR pathway, which exhibits potential as a treatment strategy for MM.


Subject(s)
Apoptosis , Autophagy , Basic Helix-Loop-Helix Transcription Factors/genetics , Multiple Myeloma/metabolism , Neoplasm Proteins/genetics , Signal Transduction , Adenine/analogs & derivatives , Adenine/pharmacology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Line, Tumor , Chloroquine/pharmacology , Gene Silencing , Humans , Multiple Myeloma/genetics , Neoplasm Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...