Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
Water Res ; 257: 121739, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38728778

ABSTRACT

The coupling between anammox and nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) has been considered a sustainable technology for nitrogen removal from sidestream wastewater and can be implemented in both membrane biofilm reactor (MBfR) and granular bioreactor. However, the potential influence of the accompanying hydrogen sulfide (H2S) in the anaerobic digestion (AD)-related methane-containing mixture on anammox/n-DAMO remains unknown. To fill this gap, this work first constructed a model incorporating the C/N/S-related bioprocesses and evaluated/calibrated/validated the model using experimental data. The model was then used to explore the impact of H2S on the MBfR and granular bioreactor designed to perform anammox/n-DAMO at practical levels (i.e., 0∼5% (v/v) and 0∼40 g/S m3, respectively). The simulation results indicated that H2S in inflow gas did not significantly affect the total nitrogen (TN) removal of the MBfR under all operational conditions studied in this work, thus lifting the concern about applying AD-produced biogas to power up anammox/n-DAMO in the MBfR. However, the presence of H2S in the influent would either compromise the treatment performance of the granular bioreactor at a relatively high influent NH4+-N/NO2--N ratio (e.g., >1.0) or lead to increased energy demand associated with TN removal at a relatively low influent NH4+-N/NO2--N ratio (e.g., <0.7). Such a negative effect of the influent H2S could not be attenuated by regulating the hydraulic residence time and should therefore be avoided when applying the granular bioreactor to perform anammox/n-DAMO in practice.

2.
World Neurosurg ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38697261

ABSTRACT

OBJECTIVE: To investigate whether risk of new vertebral compression fractures (NVCF) was associated with vicinity to treated vertebrae in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fractures (OVCFs). METHODS: All OVCFs (T6-L5) patients treated with PVP between January 2016 and December 2020 were retrospectively reviewed. Vicinity to treated vertebrae was defined as the number of vertebrae between an untreated and its closest treated level. The closest treated level was chosen as reference vertebra. Clinical, radiological and surgical parameters were compared between groups of reference vertebrae for each vicinity NVCF. RESULTS: Totally, 1348 patients with 1592 fractured and 14584 normal vertebrae were enrolled. NVCF was identified in 20.1% (271/1348) patients in 2.2% (319/14584) vertebrae in a mean follow-up time of 24.3±11.9 months. Rate of NVCF in vicinity 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 level were 4.6% (130/2808), 2.4% (62/2558), 1.8% (42/2365), 1.5% (31/2131), 1.3% (23/1739), 1.3% (17/1298), 0.8% (7/847), 0.9% (4/450), 0.8% (2/245), 0.9% (1/117) and 0% (0/26), respectively. Rate of NVCF in vicinity 1 level was significantly higher than that in vicinity 2, 3, 4, 5, 6, 7, 8 and 9 level, respectively. However, compared to reference vertebrae for vicinity 1 NVCF, any clinical, radiological and surgical parameters were not significantly different in those for vicinity 2, 3 and 4 NVCF, respectively. CONCLUSIONS: The closer vicinity to treated vertebrae in PVP, the higher rate of NVCF at follow-up. However, any clinical, radiological and surgical parameters might not matter in this phenomenon of vicinity-related NVCF.

3.
J Cardiothorac Surg ; 19(1): 235, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627835

ABSTRACT

OBJECTIVES: The goals of this study were to investigate the treatment outcomes of acute thromboembolic occlusion of the superior mesenteric artery (ATOS) and identify prognostic factors after treatment. METHODS: The clinical data of 62 patients with ATOS between 2013 and 2021 were retrospectively reviewed. Patients were stratified by the treatment strategy, complications and mortality were compared in different group. RESULTS: Sixty-two consecutive patients were identified with ATOS. The median patient age was 69 years (interquartile range 58-79 years). Endovascular therapy was initiated in 21 patients, and 4 patients received conservative treatment. Open surgery was performed first in the remaining 37 patients. The technical success rates of the endovascular first group and open surgery group were 90.5% and 97.3%, respectively. One patient in the conservative treatment group had progression of ischemia to extensive bowel necrosis. There was no difference in 30-day mortality between these groups. Predictors of 30-day mortality included initial neutrophil count > 12* 103/dL, age over 60 years old and history of chronic renal insufficiency. CONCLUSIONS: Endovascular treatment or conservative treatment may be adopted in selected patients who do not exhibit signs and symptoms of bowel necrosis, and close monitoring for bowel necrosis is important. The increase in preoperative neutrophil count, age over 60 years old and history of chronic renal insufficiency were poor prognostic factors.


Subject(s)
Endovascular Procedures , Mesenteric Ischemia , Renal Insufficiency, Chronic , Thromboembolism , Humans , Middle Aged , Aged , Mesenteric Artery, Superior/surgery , Mesenteric Ischemia/surgery , Retrospective Studies , Endovascular Procedures/adverse effects , Thromboembolism/surgery , Thromboembolism/complications , Treatment Outcome , Renal Insufficiency, Chronic/complications , Necrosis , Stents
4.
Chin J Nat Med ; 22(4): 307-317, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658094

ABSTRACT

Ulcerative colitis (UC), a prevalent form of inflammatory bowel disease (IBD), may result from immune system dysfunction, leading to the sustained overproduction of reactive oxygen species (ROS) and subsequent cellular oxidative stress damage. Recent studies have identified both peroxisome proliferator-activated receptor-γ (PPARγ) and endoplasmic reticulum (ER) stress as critical targets for the treatment of IBD. Oroxyloside (C22H20O11), derived from the root of Scutellariabaicalensis Georgi, has traditionally been used in treating inflammatory diseases. In this study, we investigated the molecular mechanisms by which oroxyloside mitigates dextran sulfate sodium (DSS)-induced colitis. We examined the effects of oroxyloside on ROS-mediated ER stress in colitis, including the protein expressions of GRP78, p-PERK, p-eIF2α, ATF4, and CHOP, which are associated with ER stress. The beneficial impact of oroxyloside was reversed by the PPARγ antagonist GW9662 (1 mg·kg-1, i.v.) in vivo. Furthermore, oroxyloside decreased pro-inflammatory cytokines and ROS production in both bone marrow-derived macrophages (BMDM) and the mouse macrophage cell line RAW 264.7. However, PPARγ siRNA transfection blocked the anti-inflammatory effect of oroxyloside and even abolished ROS generation and ER stress activation inhibited by oroxyloside in vitro. In conclusion, our study demonstrates that oroxyloside ameliorates DSS-induced colitis by inhibiting ER stress via PPARγ activation, suggesting that oroxyloside might be a promising effective agent for IBD.


Subject(s)
Colitis , Dextran Sulfate , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Mice, Inbred C57BL , PPAR gamma , Reactive Oxygen Species , Animals , PPAR gamma/metabolism , PPAR gamma/genetics , Endoplasmic Reticulum Stress/drug effects , Mice , Reactive Oxygen Species/metabolism , Colitis/chemically induced , Colitis/drug therapy , Male , Humans , Protective Agents/pharmacology
5.
Article in English | MEDLINE | ID: mdl-38538311

ABSTRACT

PURPOSE: The objective of this study was to evaluate the safety, efficacy, and feasibility of percutaneous mechanical thrombectomy (PMT) through a below-the-knee (BTK) approach for acute lower extremity deep venous thrombosis (DVT). METHODS: A retrospective review of DVT patients treated with PMT by the BTK approach at our center from April 2022 to August 2023 was performed. Their preoperative demographics, intraoperative data, and postoperative outpatient outcomes were analyzed. RESULTS: A total of 12 patients (67% men; mean age, 63 years) met the inclusion criteria. The BTK approach was successfully achieved in all patients through the posterior tibial vein (n = 1), anterior tibial vein (n = 2), and peroneal vein (n = 9). PMTs were achieved in 11 (92%) patients. Successful lysis (grade II and grade III lysis) was achieved in all patients with PMT. Four (33%) patients had residual venous occlusion over the popliteal vein. No intraoperative complications or bleeding events occurred in any of the patients. CONCLUSION: PMT via BTK puncture seems to be a safe and effective approach for treating lower extremity DVT. It is reserved for highly select patients with a low risk of bleeding and is performed at centers that have experience with this procedure.


Subject(s)
Thrombolytic Therapy , Venous Thrombosis , Male , Humans , Middle Aged , Female , Thrombolytic Therapy/adverse effects , Retrospective Studies , Fibrinolytic Agents/adverse effects , Treatment Outcome , Venous Thrombosis/diagnostic imaging , Venous Thrombosis/surgery , Thrombectomy/adverse effects , Thrombectomy/methods , Lower Extremity/blood supply , Hemorrhage/chemically induced
6.
Eur Spine J ; 33(4): 1524-1532, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38315225

ABSTRACT

PURPOSE: To report the incidence and risk factors of adjacent vertebral fracture (AVF) after percutaneous vertebroplasty (PVP) in patients with osteoporotic vertebral compression fractures (OVCFs). We focused to investigate effect of radiological or surgical features on AVF. METHODS: All patients with OVCFs who were treated with PVP between January 2016 and December 2019 were retrospectively reviewed. Patients were followed up at least 12 months after procedure according to treatment protocol. AVF was defined as postoperatively recurrent intractable back pain and subsequently presence of fracture on magnetic resonance imaging (MRI) in adjacent levels. Clinical, radiological, and surgical factors potentially affecting occurrence of AVF were recorded and analyzed using univariate and multivariate analysis. RESULTS: Totally, 1077 patients with 1077 fractured vertebrae who underwent PVP were enrolled in the study, after inclusion and exclusion criteria were met. Mean follow-up time was 24.3 ± 11.9 months (range, 12-59 months). AVF was identified in 98 (9.1%) patients. Univariate analysis showed that seven significant factors related to AVF were older age, non-traumatic fracture, cortical disruption on anterior wall, cortical disruption on lateral wall, basivertebral foramen, type-B leakage and type-C leakage. In multivariate analysis, two clinical factors, older age (P = 0.031) and non-traumatic fracture (P = 0.002), were significantly associated with AVF. However, any radiological or surgical factor did not reach significance in final model analysis. CONCLUSIONS: Incidence of AVF after PVP in patients with OVCFs was 9.1% (98/1077). Older age and non-traumatic fracture were two clinical risk factors for AVF. Neither radiological nor surgical feature was significantly correlated with AVF.


Subject(s)
Fractures, Compression , Osteoporotic Fractures , Spinal Fractures , Vertebroplasty , Humans , Vertebroplasty/adverse effects , Vertebroplasty/methods , Osteoporotic Fractures/diagnostic imaging , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Spinal Fractures/diagnostic imaging , Spinal Fractures/epidemiology , Spinal Fractures/surgery , Retrospective Studies , Fractures, Compression/diagnostic imaging , Fractures, Compression/epidemiology , Fractures, Compression/etiology , Risk Factors , Bone Cements/adverse effects , Treatment Outcome
7.
Environ Sci Technol ; 58(10): 4662-4669, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38422482

ABSTRACT

Since the mass production and extensive use of chloroquine (CLQ) would lead to its inevitable discharge, wastewater treatment plants (WWTPs) might play a key role in the management of CLQ. Despite the reported functional versatility of ammonia-oxidizing bacteria (AOB) that mediate the first step for biological nitrogen removal at WWTP (i.e., partial nitrification), their potential capability to degrade CLQ remains to be discovered. Therefore, with the enriched partial nitrification sludge, a series of dedicated batch tests were performed in this study to verify the performance and mechanisms of CLQ biodegradation under the ammonium conditions of mainstream wastewater. The results showed that AOB could degrade CLQ in the presence of ammonium oxidation activity, but the capability was limited by the amount of partial nitrification sludge (∼1.1 mg/L at a mixed liquor volatile suspended solids concentration of 200 mg/L). CLQ and its biodegradation products were found to have no significant effect on the ammonium oxidation activity of AOB while the latter would promote N2O production through the AOB denitrification pathway, especially at relatively low DO levels (≤0.5 mg-O2/L). This study provided valuable insights into a more comprehensive assessment of the fate of CLQ in the context of wastewater treatment.


Subject(s)
Ammonia , Ammonium Compounds , Ammonia/metabolism , Sewage/microbiology , Bacteria/metabolism , Bioreactors/microbiology , Oxidation-Reduction , Nitrous Oxide/analysis , Nitrification , Ammonium Compounds/metabolism
8.
Water Res ; 252: 121229, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38324989

ABSTRACT

Exploiting electrochemically active materials as flow-anodes can effectively alleviate mass transfer restriction in an electro-oxidation system. However, the electrocatalytic activity and persistence of the conventional flow-anode materials are insufficient, resulting in limited improvement in the electro-oxidation rate and efficiency. Herein, we reported a rational strategy to substantially enhance the electrocatalytic performance of flow-anodes in electro-oxidation by introducing the redox cycle of high-valent metal in a suitable carbon substrate. The characterization suggested that the SnOx-CeOx/carbon black (CB) featured well-distributed morphology, rapid charge transfer, high oxygen evolution potential, and strong water adsorption, and stood out among three kinds of SnOx-CeOx loaded carbon materials. Mechanistic analysis indicated that the redox cycle of Ce species played a key role in accelerating the electron transfer from SnOx to CB directionally and could continuously create the electron-deficient state of the SnOx, thereby sustainably triggering the generation of ·OH. All these features enabled the resulting SnOx-CeOx/CB flow-anode to accomplish a calculated maximum kinetic constant of 0.02461 1/min, a higher current efficiency of 47.1%, and a lower energy consumption of 21.3 kWh/kg COD compared with other conventional flow-anodes reported to date. Additionally, SnOx-CeOx/CB exhibited excellent stability with extremely low leaching concentrations of Sn and Ce ions. This study provides a feasible manner for efficient water decontamination using the electro-oxidation system with SnOx-CeOx/CB.


Subject(s)
Carbon , Water Pollutants, Chemical , Ibuprofen , Metals/chemistry , Oxidation-Reduction , Water , Electrodes , Water Pollutants, Chemical/chemistry
9.
Environ Res ; 247: 118285, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38266896

ABSTRACT

Traditional microbial electrochemical sensors encounter challenges due to their inherent complexity. In response to these challenges, the microbial potentiometric sensor (MPS) technology was introduced, featuring a straightforward high-impedance measurement circuit tailored for environmental monitoring. Nonetheless, the practical implementation of conventional MPS is constrained by issues such as the exposure of the reference electrode to the monitored water and the absence of methodologies to stimulate microbial metabolism. In this study, our objective was to enhance MPS performance by imbuing it with unique cathodic catalytic properties, specifically tailored for distinct application scenarios. Notably, the anodic region served as the sensing element, with both the cathodic region and reference electrode physically isolated from the analyzed water sample. In the realm of organic monitoring, the sensor without Pt/C coated in the cathodic region exhibited a faster response time (1 h) and lower detection limits (1 mg L-1 BOD, 1 mM acetic acid). Conversely, when monitoring toxic substances, the sensor with Pt/C showcased a lower detection limit (0.004% formaldehyde), while the Pt/C-free sensor demonstrated superior reusability. The sensor with Pt/C displayed a heightened anode biofilm thickness and coverage, predominantly composed of Rhodococcus. In conclusion, this study introduces simple, cost-effective, and tailorable biosensors holding substantial promise for water quality monitoring.


Subject(s)
Biosensing Techniques , Environmental Monitoring , Electrodes , Environmental Monitoring/methods , Biosensing Techniques/methods , Water Quality
10.
Environ Sci Ecotechnol ; 20: 100355, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38192428

ABSTRACT

Peracetic acid (PAA), known for its environmentally friendly properties as a oxidant and bactericide, is gaining prominence in decontamination and disinfection applications. The primary product of PAA oxidation is acetate that can serve as an electron acceptor (EA) for the biosynthesis of medium-chain fatty acids (MCFAs) via chain elongation (CE) reactions. Hence, PAA-based pretreatment is supposed to be beneficial for MCFAs production from anaerobic sludge fermentation, as it could enhance organic matter availability, suppress competing microorganisms and furnish EA by providing acetate. However, such a hypothesis has rarely been proved. Here we reveal that PAA-based pretreatment leads to significant exfoliation of extracellular polymeric substances (EPS) from sludge flocs and disruption of proteinic secondary structures, through inducing highly active free radicals and singlet oxygen. The production of MCFAs increases substantially to 11,265.6 mg COD L-1, while the undesired byproducts, specifically long-chain alcohols (LCAs), decrease to 723.5 mg COD L-1. Microbial activity tests further demonstrate that PAA pretreatment stimulates the CE process, attributed to the up-regulation of functional genes involved in fatty acid biosynthesis pathway. These comprehensive findings provide insights into the effectiveness and mechanisms behind enhanced MCFAs production through PAA-based technology, advancing our understanding of sustainable resource recovery from sewage sludge.

11.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(1): 62-68, 2024 Jan 15.
Article in Chinese | MEDLINE | ID: mdl-38225843

ABSTRACT

Objective: To investigate the clinical application of high-frequency color Doppler ultrasound (HFCDU) in detecting perforators in the deep adipose layers for harvesting super-thin anterolateral thigh flap (ALTF). Methods: Between August 2019 and January 2023, 45 patients (46 sides) with skin and soft tissue defects in the foot and ankle were treated, including 29 males and 16 females, aged from 22 to 62 years, with an average of 46.7 years. The body mass index ranged from 19.6 to 36.2 kg/m 2, with an average of 23.62 kg/m 2. The causes of injury included traffic accident injury in 15 cases, heavy object crush injury in 20 cases, mechanical injury in 8 cases, heat crush injury in 1 case, and chronic infection in 1 case. There were 20 cases on the left side, 24 cases on the right side, and 1 case on both sides. After thorough debridement, the wound size ranged from 5 cm×4 cm to 17 cm×11 cm. All patients underwent free super-thin ALTF transplantation repair. HFCDU was used to detect the location of the perforators piercing the deep and superficial fascia, as well as the direction and branches of the perforators within the deep adipose layers before operation. According to the preoperative HFCDU findings, the dimensions of the super-thin ALTF ranged from 6 cm×4 cm to 18 cm×12 cm. The donor sites of the flaps were directly sutured. Results: A total of 55 perforators were detected by HFCDU before operation, but 1 was not found during operation. During operation, a total of 56 perforators were found, and 2 perforators were not detected by HFCDU. The positive predictive value of HFCDU for identifying perforator vessels was 98.2%, and the sensitivity was 96.4%. Among the 54 perforators accurately located by HFCDU, the orientation of the perforators in the deep adipose layers was confirmed during operation. There were 21 perforators (38.9%) traveled laterally and inferiorly, 12 (22.2%) traveled medially and inferiorly, 14 (25.9%) traveled laterally and superiorly, 5 (9.3%) traveled medially and superiorly, and 2 (3.7%) ran almost vertically to the body surface. Among the 54 perforators accurately located by HFCDU, 35 were identified as type 1 perforators and 12 as type 2 perforators (HFCDU misidentified 7 type 2 perforators as type 1 perforators). The sensitivity of HFCDU in identifying type 1 perforators was 100%, with a positive predictive value of 83.3%. For type 2 perforators, the sensitivity was 63.2%, and the positive predictive value was 100%. The surgeries were successfully completed. The super-thin ALTF had a thickness ranging from 2 to 6 mm, with an average of 3.56 mm. All super-thin ALTF survived, however, 1 flap experienced a venous crisis at 1 day after operation, but it survived after emergency exploration and re-anastomosis of the veins; 1 flap developed venous crisis at 3 days after operation but survived after bleeding with several small incisions; 3 flaps had necrosis at the distal edge of the epidermis, which healed after undergoing dressing changes. All 45 patients were followed up 6-18 months (mean, 13.6 months). Three flaps required secondary defatting procedures, while the rest had the appropriate thickness, and the overall appearance was satisfactory. Conclusion: Preoperative application of HFCDU to detect the perforator in the deep adipose layers can improve the success and safety of the procedure by facilitating the harvest of super-thin ALTF.


Subject(s)
Burns , Crush Injuries , Free Tissue Flaps , Perforator Flap , Plastic Surgery Procedures , Soft Tissue Injuries , Male , Female , Humans , Thigh/diagnostic imaging , Thigh/surgery , Prospective Studies , Skin Transplantation , Soft Tissue Injuries/diagnostic imaging , Soft Tissue Injuries/surgery , Ultrasonography, Doppler, Color , Crush Injuries/surgery , Treatment Outcome
12.
Quant Imaging Med Surg ; 14(1): 800-813, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38223021

ABSTRACT

Background: Osteoporotic vertebral compression fractures (OVCFs) are the most common type of fragility fracture. Distinguishing between OVCFs and other types of vertebra diseases, such as old fractures (OFs), Schmorl's node (SN), Kummell's disease (KD), and previous surgery (PS), is critical for subsequent surgery and treatment. Combining with advanced deep learning (DL) technologies, this study plans to develop a DL-driven diagnostic system for diagnosing multi-type vertebra diseases. Methods: We established a large-scale dataset based on the computed tomography (CT) images of 1,051 patients with OVCFs from Luhe Hospital and used data of 46 patients from Xuanwu Hospital as alternative hospital validation dataset. Each patient underwent one examination. The dataset contained 11,417 CT slices and 19,718 manually annotated vertebrae with diseases. A two-stage DL-based system was developed to diagnose five vertebra diseases. The proposed system consisted of a vertebra detection module (VDModule) and a vertebra classification module (VCModule). Results: The training and testing dataset for the VDModule consisted of 9,135 and 3,212 vertebrae, respectively. The VDModule using the ResNet18-based Faster region-based convolutional neural network (R-CNN) model achieved an area under the curve (AUC), false-positive (FP) rate, and false-negative (FN) rate of 0.982, 1.52%, and 1.33%, respectively, in the testing dataset. The training dataset for VCModule consisted of 14,584 and 47,604 diseased and normal vertebrae, respectively. The testing dataset consisted of 4,489 and 15,122 diseased and normal vertebrae, respectively. The ResNet50-based VCModule achieved an average sensitivity and specificity of 0.919 and 0.995, respectively, in diagnosing four kinds of vertebra diseases except for SN in the testing dataset. In the alternative hospital validation dataset, the ResNet50-based VCModule achieved an average sensitivity and specificity of 0.891 and 0.989, respectively, in diagnosing four kinds of vertebra diseases except for SN. Conclusions: Our proposed DL system can accurately diagnose four vertebra diseases and has strong potential to facilitate the accurate and rapid diagnosis of vertebral diseases.

13.
Water Res ; 251: 121151, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38246075

ABSTRACT

The discovery of complete ammonium oxidation (comammox) has subverted the traditional perception of two-step nitrification, which plays a key role in achieving biological nitrogen removal from wastewater. Floccular sludge-based treatment technologies are being applied at the majority of wastewater treatment plants in service where detection of various abundances and activities of comammox bacteria have been reported. However, limited efforts have been made to enrich and subsequently characterize comammox bacteria in floccular sludge. To this end, a lab-scale sequencing batch reactor (SBR) in the step-feeding mode was applied in this work to enrich comammox bacteria through controlling appropriate operational conditions (dissolved oxygen of 0.5 ± 0.1 g-O2/m3, influent ammonium of 40 g-N/m3 and uncontrolled longer sludge retention time). After 215-d operation, comammox bacteria gradually gained competitive advantages over counterparts in the SBR with a stable nitrification efficiency of 92.2 ± 2.2 %: the relative abundance of Nitrospira reached 42.9 ± 1.3 %, which was 13 times higher than that of Nitrosomonas, and the amoA gene level of comammox bacteria increased to 7.7 ± 2.1 × 106 copies/g-biomass, nearly 50 times higher than that of conventional ammonium-oxidizing bacteria. The enrichment of comammox bacteria, especially Clade A Candidatus Nitrospira nitrosa, in the floccular sludge led to (i) apparent affinity constants for ammonium and oxygen of 3.296 ± 0.989 g-N/m3 and 0.110 ± 0.004 g-O2/m3, respectively, and (ii) significantly low N2O and NO production, with emission factors being 0.136 ± 0.026 % and 0.023 ± 0.013 %, respectively.


Subject(s)
Ammonium Compounds , Sewage , Sewage/microbiology , Ammonia , Bacteria , Nitrification , Oxidation-Reduction , Oxygen , Phylogeny , Archaea
14.
Neural Regen Res ; 19(5): 1105-1111, 2024 May.
Article in English | MEDLINE | ID: mdl-37862215

ABSTRACT

Human dental pulp stem cell transplantation has been shown to be an effective therapeutic strategy for spinal cord injury. However, whether the human dental pulp stem cell secretome can contribute to functional recovery after spinal cord injury remains unclear. In the present study, we established a rat model of spinal cord injury based on impact injury from a dropped weight and then intraperitoneally injected the rats with conditioned medium from human dental pulp stem cells. We found that the conditioned medium effectively promoted the recovery of sensory and motor functions in rats with spinal cord injury, decreased expression of the microglial pyroptosis markers NLRP3, GSDMD, caspase-1, and interleukin-1ß, promoted axonal and myelin regeneration, and inhibited the formation of glial scars. In addition, in a lipopolysaccharide-induced BV2 microglia model, conditioned medium from human dental pulp stem cells protected cells from pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1ß pathway. These results indicate that conditioned medium from human dental pulp stem cells can reduce microglial pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1ß pathway, thereby promoting the recovery of neurological function after spinal cord injury. Therefore, conditioned medium from human dental pulp stem cells may become an alternative therapy for spinal cord injury.

15.
J Orthop Translat ; 42: 147-159, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37823035

ABSTRACT

Chronic pain after spine surgery (CPSS) is often characterized by intractable low back pain and/or radiating leg pain, and has been reported in 8-40% of patients that received lumbar spine surgery. We conducted a literature search of PubMed, MEDLINE/OVID with a focus on studies about the etiology and treatments of CPSS and low back pain. Our aim was to provide a narrative review that would help us better understand the pathogenesis and current treatment options for CPSS. This knowledge will aid in the development of optimal strategies for managing postoperative pain symptoms and potentially curing the underlying etiologies. Firstly, we reviewed recent advances in the mechanistic study of CPSS, illustrated both structural (e.g., fibrosis and scaring) and non-structural factors (e.g., inflammation, neuronal sensitization, glial activation, psychological factor) causing CPSS, and highlighted those having not been given sufficient attention as the etiology of CPSS. Secondly, we summarized clinical evidence and therapeutic perspectives of CPSS. We also presented new insights about the treatments and etiology of CPSS, in order to raise awareness of medical staff in the identification and management of this complex painful disease. Finally, we discussed potential new targets for clinical interventions of CPSS and future perspectives of mechanistic and translational research. CPSS patients often have a mixed etiology. By reviewing recent findings, the authors advocate that clinicians shall comprehensively evaluate each case to formulate a patient-specific and multi-modal pain treatment, and importantly, consider an early intraoperative intervention that may decrease the risk or even prevent the onset of CPSS. Translational potential statement: CPSS remains difficult to treat. This review broadens our understanding of clinical therapies and underlying mechanisms of CPSS, and provides new insights which will aid in the development of novel mechanism-based therapies for not only managing the established pain symptoms but also preventing the development of CPSS.

16.
Water Res ; 242: 120291, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37413747

ABSTRACT

Fe(II) participates in complex Fe-N cycles and effects on the microbial metabolism in the anaerobic ammonium oxidation (anammox) dominated system. In this study, the inhibitory effects and mechanisms of Fe(II)-mediated multi-metabolism in anammox were revealed, and the potential role of Fe(II) in the nitrogen cycle was evaluated. The results showed that the long-term accumulation of high Fe(II) concentrations (70-80 mg/L) led to a hysteretic inhibition of anammox. High Fe(II) concentrations induced the generation of high levels of intracellular ·O2-, whereas the antioxidant capacity was insufficient to eliminate the excess ·O2-, thus causing ferroptosis to anammox cells. In addition, Fe(II) was oxidized via nitrate-dependent anaerobic ferrous-oxidation (NAFO) process, and mineralized to coquimbite and phosphosiderite. They formed crusts on the surface of the sludge, leading to mass transfer obstruction. The results of the microbial analysis showed that the addition of appropriate Fe(II) increased the abundance of Candidatus Kuenenia, and served as a potential electron donor to enrich Denitratisoma, promoting anammox and NAFO coupled with nitrogen removal, while high Fe(II) concentrations reduced the enrichment level. In this study, the understanding of Fe(II)-mediated multi-metabolism in the nitrogen cycle was deepened, providing the basis for the development of Fe(II)-based anammox technologies.


Subject(s)
Ammonium Compounds , Anaerobic Ammonia Oxidation , Anaerobiosis , Bioreactors , Oxidation-Reduction , Sewage , Nitrates/metabolism , Ferrous Compounds , Nitrogen , Denitrification
17.
Sci Total Environ ; 896: 165335, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37414167

ABSTRACT

Under the environmental sustainability concept, landfill leachate concentrate can be up-cycled as a useful resource. Practical strategy for effective management of landfill leachate concentrate is to recover the existing humate as fertilizer purpose for plant growth. Herein, we designed an electro-neutral nanofiltration membrane to separate the humate and inorganic salts for achieving a sufficient humate recovery from leachate concentrate. The electro-neutral nanofiltration membrane yielded a high retention of humate (96.54 %) with an extremely low salt rejection (3.47 %), tremendously outperforming the state-of-the-art nanofiltration membranes and exhibiting superior promise in fractionation of humate and inorganic salts. With implementation of the pressure-driven concentration process, the electro-neutral nanofiltration membrane enriched the humate from 1756 to 51,466 mg∙L-1 at a fold of 32.6, enabling 90.0 % humate recovery and 96.4 % desalination efficiency from landfill leachate concentrate. Furthermore, the recovered humate not only exerted no phytotoxicity, but also significantly promoted the metabolism of red bean plants, serving as an effective green fertilizer. The study provides a conceptual and technical platform using high-performance electro-neutral nanofiltration membranes to extract the humate as a promising nutrient for fertilizer application, in view of sustainable landfill leachate concentrate treatment.

19.
Bioresour Technol ; 386: 129510, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37495161

ABSTRACT

In this work, a bioprocess model was applied to first determine the impacts of influent substrates conditions on the granular bioreactor performing nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) and anammox integrated processes and then investigate the roles of granular sludge properties in regulating the bioreactor performance and start-up process. The ideal influent substrates conditions were identified at NO2--N/NH4+-N of 1:1 and dissolved CH4 concentration of 85 g COD m-3, which achieved 98.6% total nitrogen removal and 87.7% dissolved CH4 utilization. Under such ideal influent conditions, the initial properties of granular sludge didn't significantly affect the granular bioreactor performance. However, inoculation of granular sludge with a relatively small granular sludge size and a high abundance of n-DAMO archaea or/and anammox bacteria could effectively shorten the bioreactor start-up. Meanwhile, reducing the diffusivity of solutes within granular sludge was also beneficial for expediting the start-up process and promoting dissolved CH4 utilization.


Subject(s)
Ammonium Compounds , Nitrates , Sewage , Nitrites , Anaerobiosis , Methane , Anaerobic Ammonia Oxidation , Denitrification , Bioreactors/microbiology , Oxidation-Reduction , Nitrogen
20.
Sci Total Environ ; 895: 165051, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37391158

ABSTRACT

The discovery of complete ammonium oxidation (comammox) has redefined the perception of the nitrification process which plays a vital part in biological nitrogen removal (BNR) from wastewater. Despite the reported detection or cultivation of comammox bacteria in biofilm or granular sludge reactors, limited attempts have been made to enrich or assess comammox bacteria in floccular sludge reactors with suspended growth of microbes, which are most extensively applied at wastewater treatment plants. Therefore, through making use of a comammox-inclusive bioprocess model reliably evaluated using batch experimental data with joint contributions of different nitrifying guilds, this work probed into the proliferation and functioning of comammox bacteria in two commonly-used floccular sludge reactor configurations, i.e., continuous stirred tank reactor (CSTR) and sequencing batch reactor (SBR), under mainstream conditions. The results indicated that compared with the studied SBR, the CSTR was observed to favor the enrichment of comammox bacteria through maintaining a sufficient sludge retention time (40-100 d) while avoiding an extremely low DO level (e.g., 0.05 g-O2/m3), irrespective of the varied influent NH4+-N of 10-100 g-N/m3. Meanwhile, the inoculum sludge was found to greatly influence the start-up process of the studied CSTR. By inoculating the CSTR with a sufficient amount of sludge, finally enriched floccular sludge with a high abundance of comammox bacteria (up to 70.5 %) could be rapidly obtained. These results not only benefitted further investigation and application of comammox-inclusive sustainable BNR technologies but also explained, to some extent, the discrepancy in the reported presence and abundance of comammox bacteria at wastewater treatment plants adopting floccular sludge-based BNR technologies.


Subject(s)
Bioreactors , Sewage , Sewage/microbiology , Bioreactors/microbiology , Wastewater , Nitrification , Bacteria , Nitrogen , Oxidation-Reduction , Ammonia
SELECTION OF CITATIONS
SEARCH DETAIL
...