Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 333
Filter
1.
Clin Infect Dis ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954503

ABSTRACT

BACKGROUND: Interferon-gamma release assays (IGRA) are widely used for diagnosis of latent tuberculosis infection. However, with repeat testing, IGRA transformation (conversion or reversion) may be detected and is challenging to interpret. We reviewed the frequency of and risk factors for IGRA transformation. METHODS: We screened public databases for studies of human participants that reported the frequency of IGRA transformation. We extracted study and subject characteristics, details of IGRA testing and results. We calculated the pooled frequency of IGRA transformation (and transient transformation) and examined associated risk factors. RESULTS: The pooled frequency of IGRA conversion or reversion from 244 studies was estimated at 7.3% (95% CI 6.1-8.5%) or 22.8% (20.1-25.7%), respectively. Transient conversion or reversion were estimated at 46.0% (35.7-56.4%) or 19.6% (9.2-31.7%) of conversion or reversion events respectively. Indeterminate results seldom reverted to positive (1.2% [0.1-3.5%]). IGRA results in the borderline positive or negative range were associated with increased risk of conversion or reversion (pooled OR: conversion, 4.15 [3.00-5.30]; reversion, 4.06 [3.07-5.06]). BCG vaccination was associated with decreased risk of conversion (0.70, 0.56-0.84), cigarette smoking with decreased risk of reversion (0.44, 0.06-0.82), and female sex with decreased risk of either conversion or reversion (conversion, 0.66 [0.58-0.75]; reversion, 0.46 [0.31-0.61]). CONCLUSIONS: IGRA conversion is less common than reversion, and frequently transient. Research is needed to determine whether individuals with reversion would benefit from tuberculosis preventive treatment. Re-testing of people with indeterminate results is probably not indicated, since indeterminate results seldom revert to positive.

2.
J Neurosci ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926088

ABSTRACT

Current anesthetic theory is mostly based on neurons and/or neuronal circuits. A role for astrocytes also has been shown in promoting recovery from volatile anesthesia, while the exact modulatory mechanism and/or the molecular target in astrocytes is still unknown. In this study, by animal models in male mice and electrophysiological recordings in vivo and in vitro, we found that activating astrocytes of paraventricular thalamus (PVT) and/or knocking down PVT astrocytic Kir4.1 promoted the consciousness recovery from sevoflurane anesthesia. Single-cell RNA sequencing of PVT reveals two distinct cellular subtypes of glutamatergic neurons: PVT GRM and PVT ChAT neurons. Patch-clamp recording results proved astrocytic Kir4.1-mediated modulation of sevoflurane on PVT mainly worked on PVT ChAT neurons, which projected mainly to the mPFC. In summary, our findings support the novel conception that there is a specific PVT-prefrontal cortex projection involved in consciousness recovery from sevoflurane anesthesia, which mediated by the inhibition of sevoflurane on PVT astrocytic Kir4.1 conductance.Significance Statement How volatile anesthetics work is not fully understood. Here, we demonstrate that the commonly used volatile anesthetic sevoflurane can inhibit astrocytic Kir4.1 conductance in PVT, which enhances neuronal firing of PVT neurons. Additionally, by single-cell sequencing, cholinergic neurons in the PVT (PVT ChAT ) are the neuronal substrates for astrocytic modulation in volatile anesthesia, which directly project to prefrontal cortex. Behaviorally, the modulation of astrocytes on PVT ChAT promotes electroencephalogram (EEG) transition of prefrontal cortex; and then accelerates emergence from sevoflurane anesthesia. In summary, this study is the first to identify that astrocytic Kir4.1 in wakeful nuclei is involved in consciousness recovery from volatile anesthetics, as well as the subcellular mechanism.

3.
Angew Chem Int Ed Engl ; : e202407508, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877782

ABSTRACT

All-inorganic cesium lead triiodide perovskites (CsPbI3) have attracted increasing attention due to their good thermal stability, remarkable optoelectronic properties, and adaptability in tandem solar cells. However, N2-filled glovebox is generally required to strictly control the humidity during film fabrication due to the moisture-induced black-to-yellow phase transition, which remains a great hinderance for further commercialization. Herein, we report an effective approach via incorporating multifunctional ethacridine lactate (EAL) to mitigate moisture invasion and enable the fabrication of efficient inverted (p-i-n) CsPbI3 perovskite solar cells (PSCs) under ambient condition. It is revealed that the lactate anions accelerate the crystallization of CsPbI3, shortening the exposure time to moisture during film fabrication. Meanwhile, the conjugated backbone and multiple functional groups in the ethacridine cations can interact with I- and Pb2+ to reduce the undesired defects, stabilize the perovskite structure and facilitate the charge transport in the film. Moreover, EAL incorporation also leads to better energy alignment, thus favoring charge extraction at both upper and bottom interfaces. Consequently, the device efficiency and stability are enormously enhanced, with the champion efficiency reaching 21.08%. This even surpasses the highest value reported for the devices fabricated in glovebox, representing a record efficiency of inverted all-inorganic PSCs.

4.
Int J Gynecol Cancer ; 34(7): 1070-1076, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38839080

ABSTRACT

OBJECTIVE: The role of splenectomy on cytoreductive surgery in patients with ovarian cancer remains controversial. We conducted this meta-analysis to evaluate the safety and impact of survival outcome of splenectomy in patients with ovarian cancer. METHODS: In this meta-analysis we analyzed studies published in PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), International Clinical Trials Registry Platform (ICTRP), and Clinical Trials. gov that appeared in our search from inception to November 10, 2023. RESULT: This meta-analysis included 10 studies, totaling 6297 patients, comprising one prospective and nine retrospective analyses. The results indicated no significant disparity in overall survival and mortality (OR 1.14, 95% CI 0.69 to 1.87, p=0.62) between the splenectomy cohort and the no splenectomy (required) cohort. Furthermore, relative to the no splenectomy (required) cohort, the splenectomy group showed a heightened incidence of overall post-operative complications (odds ratio (OR) 1.66, 95% CI 1.65 to 2.61, p=0.03), an extended duration of hospitalization (mean difference (MD) 2.88 days, 95% CI 2.09 to 3.67), an increased interval from surgery to the initiation of adjuvant chemotherapy (MD 4.44 days, 95% CI 2.41 to 6.07, p<0.0001), and a greater probability of undergoing reoperation (OR 4.7, 95% CI 1.91 to 11.55, p=0.0007). However, concerning the occurrence of specific post-operative complications such as anastomotic leakage (OR 0.97, 95% CI 0.33 to 2.84, p=0.95), pancreatic fistula (OR 3.25, 95% CI 0.63 to 16.7, p=0.16), abdominal abscess (OR 1.75, 95% CI 0.25 to 12.33, p=0.57), sepsis (OR 1.46, 95% CI 0.77 to 2.77, p=0.25), and thrombotic events (OR 1.82, 95% CI 0.93 to 3.57, p=0.08), no significant differences were observed between the two cohorts. CONCLUSION: Splenectomy does not impact the overall survival and mortality of patients with ovarian cancer. Thus, it can be considered an acceptably safe procedure to obtain optimal cytoreduction. However, caution should be taken when selecting patients for splenectomy because it is associated with an increased incidence of overall post-operative complications, prolonged hospital stays, delayed initiation of adjuvant chemotherapy, and an increased probability of requiring subsequent surgical interventions.


Subject(s)
Cytoreduction Surgical Procedures , Ovarian Neoplasms , Splenectomy , Humans , Splenectomy/methods , Female , Ovarian Neoplasms/surgery , Ovarian Neoplasms/pathology , Cytoreduction Surgical Procedures/methods , Cytoreduction Surgical Procedures/adverse effects , Postoperative Complications/epidemiology
5.
Medicine (Baltimore) ; 103(26): e38515, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941391

ABSTRACT

BACKGROUND: To investigate whether intravenous administration of tranexamic acid (TXA) prior to arthroscopic rotator cuff repair improves operative blood loss, postoperative fibrinolytic index, inflammatory response, and postoperative pain. METHODS: This was a prospective, double-blind, randomized controlled study. From January 2023 to February 2024, 64 patients who required arthroscopic rotator cuff repair were included and divided into tranexamic acid group (T group) group and control group (C group) according to the random number table method. In T group, 1000 mg TXA was administered intravenously 10 minutes before surgery, and an equivalent dose of normal saline was administered intravenously 10 minutes before surgery in C group. Intraoperative bleeding, postoperative fibrinolytic indexes, inflammatory indexes, pain scores, and occurrence of adverse effects were compared between the 2 groups. RESULTS: Intraoperative bleeding in T group was lower than that in C group (P < .05); D-D and FDP in T group were significantly lower than those in C group (P < .05); postoperative TNF-α and IL-6 in 2 groups was higher than that before operation and T group was lower than C group (P < .05); The pain scores of the 2 groups after operation were lower than those before operation (P < .05), and there was no difference between the 2 groups (P > .05). CONCLUSION SUBSECTIONS: TXA is able to reduce blood loss and inflammatory reactions, modulate fibrinolytic function, and promote postoperative recovery in patients undergoing arthroscopic rotator cuff repair, with no elevated risk of complications.


Subject(s)
Antifibrinolytic Agents , Arthroscopy , Blood Loss, Surgical , Pain, Postoperative , Rotator Cuff Injuries , Tranexamic Acid , Humans , Tranexamic Acid/therapeutic use , Tranexamic Acid/administration & dosage , Male , Female , Antifibrinolytic Agents/therapeutic use , Antifibrinolytic Agents/administration & dosage , Double-Blind Method , Middle Aged , Arthroscopy/methods , Arthroscopy/adverse effects , Prospective Studies , Rotator Cuff Injuries/surgery , Blood Loss, Surgical/prevention & control , Pain, Postoperative/drug therapy , Aged , Adult , Administration, Intravenous
6.
Biochem Biophys Rep ; 38: 101744, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38873225

ABSTRACT

Cancer is the major cause of premature death in humans worldwide, demanding more efficient therapeutics. Aberrant cell proliferation resulting from the loss of cell cycle regulation is the major hallmark of cancer, so targeting cell cycle is a promising strategy to combat cancer. However, the molecular mechanism underlying the dysregulation of cell cycle of cancer cells remains poorly understood. TMEM189, a newly identified protein, plays roles in the biosynthesis of ethanolamine plasmalogen and the regulation of autophagy. Here, we demonstrated that the expression level of TMEM189 was negatively correlated with the survival rate of the cancer patients. TMEM189 deficiency significantly suppresses the cancer cell proliferation and migration, and causes cell cycle G2/M arrest both in vitro and in vivo. Furthermore, TMEM189 depletion suppressed the growth of breast tumors in vivo. Taken together, our work indicated that TMEM189 promotes cancer progression by regulating cell cycle G2/M transition, suggesting that it is a promising target in cancer therapy.

8.
Gynecol Oncol ; 188: 27-34, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38901080

ABSTRACT

OBJECTIVE: Given the low incidence of venous thromboembolism (VTE) in endometrial cancer patients undergoing minimally invasive surgery, coupled with the existing uncertainties within guidelines regarding pharmacologic thromboprophylaxis in this area, there is an urgent need for a comprehensive literature review. This review aims to evaluate the necessity of pharmacologic VTE prophylaxis in these patients. METHODS: PubMed, Embase, Cochrane Central Register of Controlled Trials, International Clinical Trials Registry Platform, and ClinicalTrials.gov were systematically searched from inception to March 10, 2024. The analysis was performed using R version 4.2.3. RESULTS: Seven studies involving 3931 endometrial cancer patients were included in the analysis. Meta-analysis results revealed that within 30 days postoperatively, the incidence of VTE was 0.51% (5 out of 990) in the pharmacologic prophylaxis group and 0.70% (7 out of 995) in the mechanical prophylaxis group, with a relative risk (RR) of 1.14 (95% CI 0.19-6.95), indicating no significant difference between the groups. Additionally, within the same timeframe, the incidence of VTE was 0.37% (4 out of 1083) in the extended pharmacologic prophylaxis group and 1.14% (4 out of 352) in the non-extended pharmacologic prophylaxis group, yielding an RR of 0.41 (95% CI 0.11-1.54), again showing no significant difference between the groups. CONCLUSIONS: Our study indicates that routine pharmacological VTE prophylaxis may not be imperative for endometrial cancer patients undergoing minimally invasive surgery, as mechanical prophylaxis alone seems to be efficacious. However, it is crucial to acknowledge that a subset of high-risk patients may derive benefit from pharmacological prophylaxis or even extended regimens. Nonetheless, the absence of a validated risk prediction model for identifying such patients underscores the need for further research in this area. PROTOCOL REGISTRATION: CRD 42024516595.

9.
Neural Regen Res ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38934400

ABSTRACT

ABSTRACT: Glial cells play crucial roles in regulating physiological and pathological functions, including sensation, the response to infection and acute injury, and chronic neurodegenerative disorders. Glial cells include astrocytes, microglia, and oligodendrocytes in the central nervous system, and satellite glial cells and Schwann cells in the peripheral nervous system. Despite the greater understanding of glial cell types and functional heterogeneity achieved through single-cell and single-nucleus RNA sequencing in animal models, few studies have investigated the transcriptomic profiles of glial cells in the human spinal cord. Here, we used high-throughput single-nucleus RNA sequencing and spatial transcriptomics to map the cellular and molecular heterogeneity of astrocytes, microglia, and oligodendrocytes in the human spinal cord. To explore the conservation and divergence across species, we compared these findings with those from mice. In the human spinal cord, astrocytes, microglia, and oligodendrocytes were each divided into six distinct transcriptomic subclusters. In the mouse spinal cord, astrocytes, microglia, and oligodendrocytes were divided into five, four, and five distinct transcriptomic subclusters, respectively.The comparative results revealed substantial heterogeneity in all glial cell types between humans and mice. Additionally, we detected sex differences in gene expression in human spinal cord glial cells. Specifically, in all astrocyte subtypes, the levels of NEAT1 and CHI3L1 were higher in males than in females, whereas the levels of CST3 were lower in males than in females. In all microglial subtypes, all differentially expressed genes were located on the sex chromosomes. In addition to sex-specific gene differences, the levels of MT-ND4, MT2A, MT-ATP6, MT-CO3, MT-ND2, MT-ND3, and MT-CO2 in all spinal cord oligodendrocyte subtypes were higher in females than in males. Collectively, the present dataset extensively characterizes glial cell heterogeneity and offers a valuable resource for exploring the cellular basis of spinal cord-related illnesses, including chronic pain, amyotrophic lateral sclerosis, and multiple sclerosis.

10.
Adv Ther ; 41(7): 2776-2790, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38743240

ABSTRACT

INTRODUCTION: The number of elderly patients who require surgery as their primary treatment has increased rapidly in recent years. Among 300 million people globally who underwent surgery every year, patients aged 65 years and over accounted for more than 30% of cases. Despite medical advances, older patients remain at higher risk of postoperative complications. Early diagnosis and effective prediction are essential requirements for preventing serious postoperative complications. In this study, we aim to provide new biomarker combinations to predict the incidence of postoperative intensive care unit (ICU) admissions > 24 h in elderly patients. METHODS: This investigation was conducted as a nested case-control study, incorporating 413 participants aged ≥ 65 years who underwent non-cardiac, non-urological elective surgeries. These individuals underwent a 30-day postoperative follow-up. Before surgery, peripheral venous blood was collected for analyzing serum creatinine (Scr), procalcitonin (PCT), C-reactive protein (CRP), and high-sensitivity CRP (hsCRP). The efficacy of these biomarkers in predicting postoperative complications was evaluated using receiver operating characteristic (ROC) curve analysis and area under the curve (AUC) values. RESULTS: Postoperatively, 10 patients (2.42%) required ICU admission. Regarding ICU admissions, the AUCs with 95% confidence intervals (CIs) for the biomarker combinations of Scr × PCT and Scr × CRP were 0.750 (0.655-0.845, P = 0.007) and 0.724 (0.567-0.882, P = 0.015), respectively. Furthermore, cardiovascular events were observed in 14 patients (3.39%). The AUC with a 95% CI for the combination of Scr × CRP in predicting cardiovascular events was 0.688 (0.560-0.817, P = 0.017). CONCLUSION: The innovative combinations of biomarkers (Scr × PCT and Scr × CRP) demonstrated efficacy as predictors for postoperative ICU admissions in elderly patients. Additionally, the Scr × CRP also had a moderate predictive value for postoperative cardiovascular events. TRIAL REGISTRATION: China Clinical Trial Registry, ChiCTR1900026223.


Subject(s)
Biomarkers , C-Reactive Protein , Creatinine , Intensive Care Units , Postoperative Complications , Humans , Aged , Male , Biomarkers/blood , Female , Intensive Care Units/statistics & numerical data , Postoperative Complications/blood , Postoperative Complications/epidemiology , Postoperative Complications/diagnosis , C-Reactive Protein/analysis , Creatinine/blood , Case-Control Studies , Procalcitonin/blood , Aged, 80 and over , ROC Curve , Predictive Value of Tests
11.
Fitoterapia ; 175: 105982, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685512

ABSTRACT

A phytochemical investigation on the buds of edible medicinal plant, Eugenia carvophyllata, led to the discovery of seven new compounds, caryophones A-G (1-7), along with two biogenetically-related known ones, 2-methoxy-7-methyl-1,4-naphthalenedione (8) and eugenol (9). Compounds 1-3 represent the first examples of C-5-C-1' connected naphthoquinone-monoterpene adducts with a new carbon skeleton. Compounds 4-7 are a class of novel neolignans with unusual linkage patterns, in which the C-9 position of one phenylpropene unit coupled with the aromatic core of another phenylpropene unit. The chemical structures of the new compounds were determined based on extensive spectroscopic analysis, X-ray diffraction crystallography, and quantum-chemical calculation. Among the isolates, compounds (-)-2, 3, 6, and 9 showed significant in vitro inhibitory activities against respiratory syncytial virus (RSV)-induced nitric oxide (NO) production in RAW264.7 cells.


Subject(s)
Anti-Inflammatory Agents , Eugenia , Lignans , Naphthoquinones , Nitric Oxide , Phytochemicals , Mice , RAW 264.7 Cells , Animals , Nitric Oxide/metabolism , Molecular Structure , Lignans/pharmacology , Lignans/isolation & purification , Lignans/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Naphthoquinones/pharmacology , Naphthoquinones/isolation & purification , Naphthoquinones/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Eugenia/chemistry , Respiratory Syncytial Viruses/drug effects , China
12.
Zhongguo Zhong Yao Za Zhi ; 49(3): 728-734, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621876

ABSTRACT

Mesona chinensis is a common medicinal and edible plant in the Lingnan region of China, which has extensive pharmacological activity. However, the study of its chemical constituents is not sufficient. In this study, a variety of modern chromatographic separation techniques were used to isolate two compounds from 95% ethanol extract of the grass parts of M. chinensis. Their absolute configurations were determined by ultraviolet spectroscopy(UV), infrared spectroscopy(IR), high resolution mass spectrometry(HR-ESI-MS), 1D and 2D nuclear magnetic resonance(1D NMR and 2D NMR), and single-crystal X-ray diffraction(SC-XRD). Specifically, they were two new benzoyl-sesquiterpenes and named mesonanol A and mesonanol B, respectively. The results of the pharmacological activity evaluation showed that neither of the two new compounds showed obvious antiviral and anti-inflammatory activities.


Subject(s)
Lamiaceae , Sesquiterpenes , Magnetic Resonance Spectroscopy , Mass Spectrometry , Spectrophotometry, Infrared , Molecular Structure
13.
Nano Lett ; 24(18): 5460-5466, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38669564

ABSTRACT

The performance of tin halide perovskite solar cells (PSCs) has been severely limited by the rapid crystallization of tin perovskites, which usually leads to an undesirable film quality. In this work, we tackle this issue by regulating the nucleation and crystal growth of tin perovskite films using a small Lewis base additive, urea. The urea-SnI2 interaction facilitates the formation of larger and more uniform clusters, thus accelerating the nucleation process. Additionally, the crystal growth process is extended, resulting in a high-quality tin perovskite film with compact morphology, increased crystallinity, and reduced defects. Consequently, the efficiency of tin PSCs is significantly increased from 10.42% to 14.22%. This work highlights the importance of manipulating the nucleation and crystal growth of tin perovskites to realize efficient tin PSCs.

14.
Nat Commun ; 15(1): 2503, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509064

ABSTRACT

Targeting the mitogen-activated protein kinase (MAPK) cascade in pancreatic ductal adenocarcinoma (PDAC) remains clinically unsuccessful. We aim to develop a MAPK inhibitor-based therapeutic combination with strong preclinical efficacy. Utilizing a reverse-phase protein array, we observe rapid phospho-activation of human epidermal growth factor receptor 2 (HER2) in PDAC cells upon pharmacological MAPK inhibition. Mechanistically, MAPK inhibitors lead to swift proteasomal degradation of dual-specificity phosphatase 6 (DUSP6). The carboxy terminus of HER2, containing a TEY motif also present in extracellular signal-regulated kinase 1/2 (ERK1/2), facilitates binding with DUSP6, enhancing its phosphatase activity to dephosphorylate HER2. In the presence of MAPK inhibitors, DUSP6 dissociates from the protective effect of the RING E3 ligase tripartite motif containing 21, resulting in its degradation. In PDAC patient-derived xenograft (PDX) models, combining ERK and HER inhibitors slows tumour growth and requires cytotoxic chemotherapy to achieve tumour regression. Alternatively, MAPK inhibitors with trastuzumab deruxtecan, an anti-HER2 antibody conjugated with cytotoxic chemotherapy, lead to sustained tumour regression in most tested PDXs without causing noticeable toxicity. Additionally, KRAS inhibitors also activate HER2, supporting testing the combination of KRAS inhibitors and trastuzumab deruxtecan in PDAC. This study identifies a rational and promising therapeutic combination for clinical testing in PDAC patients.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins p21(ras)/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Mitogen-Activated Protein Kinases/metabolism , Cell Line, Tumor
15.
Chin Med J (Engl) ; 137(7): 818-829, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38494343

ABSTRACT

ABSTRACT: Lung cancer is one of the most common malignancies and has the highest number of deaths among all cancers. Despite continuous advances in medical strategies, the overall survival of lung cancer patients is still low, probably due to disease progression or drug resistance. Ferroptosis is an iron-dependent form of regulated cell death triggered by the lethal accumulation of lipid peroxides, and its dysregulation is implicated in cancer development. Preclinical evidence has shown that targeting the ferroptosis pathway could be a potential strategy for improving lung cancer treatment outcomes. In this review, we summarize the underlying mechanisms and regulatory networks of ferroptosis in lung cancer and highlight ferroptosis-targeting preclinical attempts to provide new insights for lung cancer treatment.


Subject(s)
Ferroptosis , Lung Neoplasms , Humans , Disease Progression , Lipid Peroxides
16.
Gynecol Oncol ; 184: 198-205, 2024 May.
Article in English | MEDLINE | ID: mdl-38335803

ABSTRACT

OBJECTIVE: To investigate the impact of lymph-vascular space invasion (LVSI) status on the prognosis of endometrial cancer (EC) according to a three-tiered scoring system for LVSI. METHODS: PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), International Clinical Trials Registry Platform (ICTRP), and Clinical Trials.gov were searched from inception to September 1st, 2023. The analysis was conducted using STATA 16.0. RESULTS: A total of 9 studies with 4456 EC patients were included in the analysis. No LVSI was found in 72% of EC patients (95% CI 0.65-0.79), while focal and substantial LVSI were present in 16% (95% CI 0.11-0.21) and 13% (95% CI 0.08-018) of patients, respectively. Compared to the no LVSI group, the focal and substantial LVSI groups had poorer overall survival (for focal LVSI: HR 1.33, 95% CI 1.02-1.74; for substantial LVSI: HR 2.51, 95% CI 1.61-3.90), poorer disease-free survival (for substantial LVSI: HR 2.86, 95% CI 1.21-6.77), and an increased risk of recurrence, including pelvic recurrence (for focal LVSI: HR 2.05, 95% CI 1.03-4.07; for substantial LVSI: HR 6.06, 95% CI 3.31-11.08), distant recurrence (for focal LVSI: HR 2.04, 95% CI 1.42-2.92; for substantial LVSI: HR 3.36, 95% CI 2.35-4.793), and lymph node involvement (for focal LVSI: OR 3.52, 95% CI 1.339.34; for substantial LVSI: OR 5.42, 95% CI 2.78-10.58). Substantial LVSI was more prone to pelvic recurrence (HR 1.82, 95% CI 1.05-3.15) and distant recurrence (HR 2.21, 95% CI 1.48-3.28) than focal LVSI. CONCLUSIONS: EC patients with focal and substantial LVSI had poorer survival, recurrence, and a higher incidence of lymph node metastasis than patients without LVSI. The substantial LVSI group was associated with even worse prognosis than the focal LVSI group. The three-tiered LVSI scoring system might effectively predict the prognosis of EC and guide clinical decision-making. PROTOCOL REGISTRATION: CRD 42023451793.


Subject(s)
Endometrial Neoplasms , Lymphatic Metastasis , Neoplasm Invasiveness , Humans , Female , Endometrial Neoplasms/pathology , Endometrial Neoplasms/mortality , Prognosis , Lymphatic Vessels/pathology , Lymph Nodes/pathology
17.
Biochem Biophys Res Commun ; 702: 149655, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38340654

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of liver disease worldwide. MTARC1, encoded by the MTARC1 gene, is a mitochondrial outer membrane-anchored enzyme. Interestingly, the MTARC1 p.A165T (rs2642438) variant is associated with a decreased risk of NAFLD, indicating that MTARC1 might be an effective target. It has been reported that the rs2642438 variant does not have altered enzymatic activity so we reasoned that this variation may affect MTARC1 stability. In this study, MTARC1 mutants were generated and stability was assessed using a protein stability reporter system both in vitro and in vivo. We found that the MTARC1 p.A165T variant has dramatically reduced the stability of MTARC1, as assessed in several cell lines. In mice, the MTARC1 A168T mutant, the equivalent of human MTARC1 A165T, had diminished stability in mouse liver. Additionally, several MTARC1 A165 mutants, including A165S, A165 N, A165V, A165G, and A165D, had dramatically decreased stability as well, suggesting that the alanine residue of MTARC1 165 site is essential for MTARC1 protein stability. Collectively, our data indicates that the MTARC1 p.A165T variant (rs2642438) leads to reduced stability of MTARC1. Given that carriers of rs2642438 show a decreased risk of NAFLD, the findings herein support the notion that MTARC1 inhibition may be a therapeutic target to combat NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Lipid Metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Protein Stability
18.
Cancer Lett ; 587: 216696, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38331089

ABSTRACT

Lactate dehydrogenase A (LDHA) serves as a key regulator of the Warburg Effect by catalyzing the conversion of pyruvate to lactate in the final step of glycolysis. Both the expression level and enzyme activity of LDHA are upregulated in cancers, however, the underlying mechanism remains incompletely understood. Here, we show that LDHA is post-translationally palmitoylated by ZDHHC9 at cysteine 163, which promotes its enzyme activity, lactate production, and reduces reactive oxygen species (ROS) generation. Replacement of endogenous LDHA with a palmitoylation-deficient mutant leads to reduced pancreatic cancer cell proliferation, increased T-cell infiltration, and limited tumor growth; it also affects pancreatic cancer cell response to chemotherapy. Moreover, LDHA palmitoylation is upregulated in gemcitabine resistant pancreatic cancer cells. Clinically, ZDHHC9 is upregulated in pancreatic cancer and correlated with poor prognoses for patients. Overall, our findings identify ZDHHC9-mediated palmitoylation as a positive regulator of LDHA, with potentially significant implications for cancer etiology and targeted therapy for pancreatic cancer.


Subject(s)
L-Lactate Dehydrogenase , Pancreatic Neoplasms , Humans , L-Lactate Dehydrogenase/genetics , Lipoylation , Cell Line, Tumor , Lactate Dehydrogenase 5/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Glycolysis , Cell Proliferation , Lactates
19.
Eur J Med Chem ; 268: 116271, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38401187

ABSTRACT

Epigenetic modifications play crucial roles in physiological processes, including cell differentiation, proliferation, and death. Bromodomain/Brd-containing proteins (BCPs) regulate abnormal gene expression in various diseases by recognizing the lysine-ε-N-acetylated residues (KAc) or by acting as transcriptional co-activators. Small molecule inhibitors targeting BCPs offer an attractive strategy for modulating aberrant gene expression. Besides the extensive research on the bromodomain and extra-terminal (BET) domain family proteins, the non-BET proteins have gained increasing attention. Bromodomain containing protein 8 (BRD8), a reader of KAc and co-activator of nuclear receptors (NRs), plays a key role in various cancers. This review provides a comprehensive analysis of the structure, disease-related functions, and inhibitor development of BRD8. Opportunities and challenges for future studies targeting BRD8 in disease treatment are discussed.


Subject(s)
Neoplasms , Humans , Neoplasms/metabolism , Transcription Factors , Lysine , Protein Domains , Bromodomain Containing Proteins
20.
Article in English | MEDLINE | ID: mdl-38357887

ABSTRACT

Fabricating perovskite solar cells (PSCs) in an ambient environment provides low-cost preparation routes for solar cells that are suitable for large-scale production. Compared with methylammonium (MA)- based perovskite materials, formamidinium lead iodide (FAPbI3) possesses a more favorable bandgap for light harvesting and better thermostability. However, the phase transition from the α-phase to the δ-phase easily occurs, making it challenging for ambient-air processing. Herein, we develop a buried interface engineering strategy via two molecules including 1,4-bis(diphenylphosphino)butane (DPPB) as well as [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl] phosphonic acid (Me-4PACz) to optimize air-processed inverted FAPbI3 PSCs. This strategy regulates the crystallization process of the air-fabricated FAPbI3 perovskite film, leading to a purer α-phase with significantly enhanced crystallinity and enlarged grain sizes. Apart from improving the bulk perovskite film, the defects at the NiOx/perovskite interface are passivated, and the energy levels are better matched in the modified device, which facilitates efficient carrier extraction. Resultantly, the target device processed in the open air achieves a dramatically improved power conversion efficiency from 11.37% to 18.45%, in association with an enhanced device stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...