Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 389
Filter
1.
Phytomedicine ; 129: 155713, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38735196

ABSTRACT

BACKGROUND: Oligoasthenozoospermia is the most common type of semen abnormality in male infertile patients. Betaine (BET) has been proved to have pharmacological effects on improving semen quality. BET also belongs to endogenous physiological active substances in the testis. However, the physiological function of BET in rat testis and its pharmacological mechanism against oligoasthenozoospermia remain unclear. PURPOSE: This research aims to prove the therapeutic effect and potential mechanism of BET on oligoasthenozoospermia rat model induced by Tripterygium wilfordii glycosides (TWGs). METHODS: The oligoasthenozoospermia rat model was established by a continuous gavage of TWGs (60 mg/kg) for 28 days. Negative control group, oligoasthenozoospermia group, positive drug group (levocarnitine, 300 mg/kg), and 200 mg/kg, 400 mg/kg, and 800 mg/kg BET groups were created for exploring the therapeutic effect of BET on the oligoasthenozoospermia rat model. The therapeutic effect was evaluated by HE and TUNEL staining. Immunofluorescence assay of DNMT3A, PIWIL1, PRMT5, SETDB1, BHMT2, and METTL3, methylation capture sequencing, Pi-RNA sequencing, and molecular docking were used to elucidate potential pharmacological mechanisms. RESULTS: It is proved that BET can significantly restore testicular pathological damage induced by TWGs, which also can significantly reverse the apoptosis of spermatogenic cells. The spermatogenic cell protein expression levels of DNMT3A, PIWIL1, PRMT5, SETDB1, BHMT2, and METTL3 significantly decreased in oligoasthenozoospermia group. 400 mg/kg and 800 mg/kg BET groups can significantly increase expression level of the above-mentioned proteins. Methylation capture sequencing showed that BET can significantly increase the 5mC methylation level of Spata, Spag, and Specc spermatogenesis-related genes. Pi-RNA sequencing proved that the above-mentioned genes produce a large number of Pi-RNA under BET intervention. Pi-RNA can form complexes with PIWI proteins to participate in DNA methylation of target genes. Molecular docking indicated that BET may not directly act as substrate for methyltransferase and instead participates in DNA methylation by promoting the methionine cycle and increasing S-adenosylmethionine synthesis. CONCLUSION: BET has a significant therapeutic effect on oligoasthenozoospermia rat model induced by TWPs. The mechanism mainly involves that BET can increase the methylation level of Spata, Specc, and Spag target genes through the PIWI/Pi-RNA pathway and up-regulation of methyltransferases (including DNA methyltransferases and histone methyltransferases).

2.
J Thromb Haemost ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38574862

ABSTRACT

BACKGROUND: Coagulopathy and associated bleeding and deep vein thrombosis (DVT) are major causes of morbidity and mortality in patients with acute leukemia. The underlying mechanisms of these complications have not been fully elucidated. OBJECTIVES: To evaluate the associations between biomarker levels and bleeding and DVT in acute leukemia patients. METHODS: We examined plasma levels of activators, inhibitors, and biomarkers of the coagulation and fibrinolytic pathways in patients aged ≥18 years with newly diagnosed acute leukemia compared with those of normal controls. Multivariable regression models were used to examine the association of biomarkers with bleeding and DVT in acute leukemia patients. The study included 358 patients with acute leukemia (29 with acute promyelocytic leukemia [APL], 253 with non-APL acute myeloid leukemia, and 76 with acute lymphoblastic leukemia) and 30 normal controls. RESULTS: Patients with acute leukemia had higher levels of extracellular vesicle tissue factor (EVTF) activity, phosphatidylserine-positive extracellular vesicles, plasminogen activator inhibitor-1, plasmin-antiplasmin complexes, and cell-free DNA and lower levels of citrullinated histone H3-DNA complexes compared with normal controls. APL patients had the highest levels of EVTF activity and the lowest levels of tissue plasminogen activator among acute leukemia patients. There were 41 bleeding and 23 DVT events in acute leukemia patients. High EVTF activity was associated with increased risk of bleeding (subdistribution hazard ratio, 2.30; 95% CI, 0.99-5.31), whereas high levels of plasminogen activator inhibitor-1 were associated with increased risk of DVT (subdistribution hazard ratio, 3.00; 95% CI, 0.95-9.47) in these patients. CONCLUSION: Our study shows alterations in several biomarkers in acute leukemia and identifies biomarkers associated with risk of bleeding and DVT.

3.
Inorg Chem ; 63(17): 7848-7857, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38635372

ABSTRACT

To systematically investigate the dependence of the initiating group and metal size on polymerization performance, a family of rare-earth metal bis(alkyl)/bis(benzyl)/bis(amide) complexes supported by a monoanionic tridentate amidinate ligand [(2,6-iPr2C6H3)NC(Ph)N(C6H4-2-OMe]- (HL) were synthesized and well-characterized. Treatment of rare-earth metal tris(alkyl)/tris(benzyl)/tris(amide) complexes Y(CH2C6H4NMe2-o)3 or Y(CH2SiMe3)3(THF)2 or Ln[N(SiHMe2)2]3(THF)x (Ln = Sc, x = 1; Ln = Y, La, Sm, Lu, x = 2) with 1 equiv of HL gave the corresponding mono(amidinate) rare-earth metal bis(alkyl)/bis(benzyl)/bis(amide) complexes [(2,6-iPr2C6H4)NC(Ph)N(C6H4-2-OMe)]Y(CH2C6H4NMe2-o)2 (1), [(2,6-iPr2C6H4)NC(Ph)N(C6H4-2-OMe)]Y(CH2SiMe3)2(THF) (2), and [(2,6-iPr2C6H4)NC(Ph)N(C6H4-2-OMe)]Ln[N(SiHMe2)2]2(THF)n (Ln = Y, n = 1 (3); Ln = La, n = 1 (4); Ln = Sc, n = 0 (5); Ln = Lu, n = 0 (6); Ln = Sm, n = 0 (7)) in good isolated yields. These complexes were characterized by elemental analysis, NMR spectroscopy, and single-crystal X-ray diffraction. In the presence of excess AlMe3 and on treatment with 1 equiv of [Ph3C][B(C6F5)4], these complexes could serve as precatalysts for cationic polymerization of isoprene, in which the dependence of the polymerization activity and regioselectivity on the initiating group and metal size was observed.

4.
Sci Rep ; 14(1): 8642, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622172

ABSTRACT

Cation exchanger (CAX) genes play an important role in plant growth/development and response to biotic and abiotic stresses. Here, we tried to obtain important information on the functionalities and phenotypic effects of CAX gene family by systematic analyses of their expression patterns, genetic diversity (gene CDS haplotypes, structural variations, gene presence/absence variations) in 3010 rice genomes and nine parents of 496 Huanghuazhan introgression lines, the frequency shifts of the predominant gcHaps at these loci to artificial selection during modern breeding, and their association with tolerances to several abiotic stresses. Significant amounts of variation also exist in the cis-regulatory elements (CREs) of the OsCAX gene promoters in 50 high-quality rice genomes. The functional differentiation of OsCAX gene family were reflected primarily by their tissue and development specific expression patterns and in varied responses to different treatments, by unique sets of CREs in their promoters and their associations with specific agronomic traits/abiotic stress tolerances. Our results indicated that OsCAX1a and OsCAX2 as general signal transporters were in many processes of rice growth/development and responses to diverse environments, but they might be of less value in rice improvement. OsCAX1b, OsCAX1c, OsCAX3 and OsCAX4 was expected to be of potential value in rice improvement because of their associations with specific traits, responsiveness to specific abiotic stresses or phytohormones, and relatively high gcHap and CRE diversity. Our strategy was demonstrated to be highly efficient to obtain important genetic information on genes/alleles of specific gene family and can be used to systematically characterize the other rice gene families.


Subject(s)
Oryza , Plant Breeding , Regulatory Sequences, Nucleic Acid , Stress, Physiological/genetics , Cations/metabolism , Genetic Variation
5.
Cancer ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579107

ABSTRACT

BACKGROUND: Autologous peripheral blood stem cell transplantation (aPBSCT) is the standard of care for adults with relapsed lymphoma, yet recipients remain at risk of developing chronic health conditions (CHCs). It was hypothesized that body composition measurements of skeletal muscle and fat are associated with late-onset CHCs and nonrelapse mortality after aPBSCT. METHODS: Leveraging the Blood or Marrow Transplant Survivor Study, we examined association between pre-aPBSCT body composition and new-onset grade 3-5 CHCs among 187 adults with lymphoma treated with aPBSCT (2011-2014) surviving ≥2 years after aPBSCT. Using computed tomography scans at the L3 level, skeletal muscle mass (skeletal muscle area and skeletal muscle density [SMD]) and body fat (subcutaneous adipose tissue and visceral adipose tissue) were measured and quantified as sex-specific z-scores. Competing risk models were built to study the impact of body composition on incident grade 3 through 5 CHCs and nonrelapse mortality (NRM) adjusting for confounders. RESULTS: The study cohort had a median age at aPBSCT of 57 years with 63% males, 77% non-Hispanic Whites and 81% with non-Hodgkin lymphoma. The 5-year cumulative incidence of grade 3 through 5 CHCs was 47% (95% Confidence Interval, CI, 38%-56%). Each SD increase in SMD was associated with 30% reduced risk of grade 3 through 5 CHCs (95% CI, 0.50-0.96). The 10-year cumulative incidence of NRM was 16% (95% CI, 10-22). No body composition measure was associated with NRM. CONCLUSIONS: The association between SMD and grade 3 through 5 CHCs following aPBSCT could inform development of prognostic models to identify adults with lymphoma at greatest risk of morbidity following aPBSCT.

6.
Opt Express ; 32(7): 12734-12746, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571088

ABSTRACT

We study ionization of aligned H2+ in strong elliptically polarized laser fields numerically and analytically. The calculated offset angle in photoelectron momentum distribution is several degrees larger for the molecule than a model atom with similar ionization potential at diverse laser parameters. Using a strong-field model that considers the properties of multi-center and single-center Coulomb potentials, we are able to quantitatively reproduce this angle difference between the molecule and the atom. Further analyses based on this model show that the response time of electron to light which is encoded in the offset angle and is manifested as the time spent in tunneling ionization, is about 15 attoseconds longer for the molecule than the atom. This time difference is further enlarged when increasing the internuclear distance of the molecule.

7.
J Colloid Interface Sci ; 667: 371-384, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38640656

ABSTRACT

The poor structural stability and conductivity of Na3V2(PO4)3 (NVP) have been serious limitations to its development. In this paper, Sc3+ is selected to replace partial site of V3+ which can enhance its ability to bond with oxygen, forming the ScO6 octahedral unit, resulting in improved structural stability and better kinetic properties for the NVP system. Moreover, due to the larger ionic radius of Sc3+ compared to V3+, moderate Sc3+ substitution can support the crystal framework as pillar ions and expand the migration channels for de-intercalation of Na+, thus efficiently promoting ionic conductivity. The introduction of polyacrylonitrile (PAN) to provide an N-doped porous carbon substrate is another key aspect. The low-cost carbon resource of PAN can induce a beneficial nitrogen-doped carbon skeleton with defects, enhancing electronic conductivity at the interface to reduce the polarization phenomenon. The established pore structure can serve as a buffer for unit cell deformation caused by Na+ migration. Furthermore, the enlarged specific surface area provides more active sites for electrolyte infiltration, improving the material utilization rate. The after cycling X-ray Diffraction/scanning electron microscope (XRD/SEM) further confirms the stabilized porous carbon skeleton and improved crystal stability of Sc-3 material. Ex-situ XRD analysis shows that the crystal volume change in the Sc-3 cathode is relatively slight but reversible during the charge/discharge process, indicating that Sc3+ doping plays a crucial role in stabilizing the unit cell structure. The hybrid Sc/VO6 and PO4 units jointly build a strong bone structure to resist stress and weaken deformation. Accordingly, the optimized Sc-3 sample reveals an initial capacity of 115.9 mAh/g at 0.1C, with a capacity retention of 78.6 % after 2000 cycles at 30C. The Sc-3//CHC full battery can release a capacity of 191.3 mAh/g at 0.05C, accompanied by successful illumination, showcasing its promising practical applications.

8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 634-638, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660878

ABSTRACT

Thalassemia is most widely distributed single gene autosome recessive genetic disease in the world, whose clinical manifestation was changed from asymptomatic anemia to severe anemia requiring continous blood transfusion to maintain life, thus resulting in a serious economic burden to society and families. Therefore, it is necessary to carry out the corresponding prentatal screening and diagnosis. Most of the conventional detection methods can only detect the common thalassemia genotype, it can easy to cause misdiagnosis or missed diagnosis for those rate genetic variantions. The third-generation sequecing (TGS) has been applied to the detection of thalassemia genes, which is more accurate, reliable and superior to the converntional detection methods. This article reviews the latest research progress of the TGS technology in genetic testing of thalassemia.


Subject(s)
Genetic Testing , Thalassemia , Humans , Thalassemia/genetics , Thalassemia/diagnosis , Genotype , Sequence Analysis, DNA , High-Throughput Nucleotide Sequencing , Mutation
9.
Front Immunol ; 15: 1365457, 2024.
Article in English | MEDLINE | ID: mdl-38529272

ABSTRACT

Background: Inflammatory bowel disease (IBD) greatly affects human quality of life. Mannose has been reported to be used to treat IBD, but the mechanism is currently unknown. Methods: C57/BL mice were used as research subjects, and the mouse acute colitis model was induced using dextran sulfate sodium salt (DSS). After oral administration of mannose, the body weights and disease activity index (DAI) scores of the mice were observed. The colon lengths, histopathological sections, fecal content microbial sequencing, colon epithelial inflammatory genes, and tight junction protein Occludin-1 expression levels were measured. We further used the feces of mice that had been orally administered mannose to perform fecal bacterial transplantation on the mice with DSS-induced colitis and detected the colitis-related indicators. Results: Oral administration of mannose increased body weights and colon lengths and reduced DAI scores in mice with DSS-induced colitis. In addition, it reduced the expression of colon inflammatory genes and the levels of serum inflammatory factors (TNF-α, IL-6, and IL-1ß), further enhancing the expression level of the colonic Occludin-1 protein and alleviating the toxic response of DSS to the intestinal epithelium of the mice. In addition, gut microbial sequencing revealed that mannose increased the abundance and diversity of intestinal flora. Additionally, after using the feces of the mannose-treated mice to perform fecal bacterial transplantation on the mice with DSS-induced colitis, they showed the same phenotype as the mannose-treated mice, and both of them alleviated the intestinal toxic reaction induced by the DSS. It also reduced the expression of intestinal inflammatory genes (TNF-α, IL-6, and IL-1ß) and enhanced the expression level of the colonic Occludin-1 protein. Conclusion: Mannose can treat DSS-induced colitis in mice, possibly by regulating intestinal microorganisms to enhance the intestinal immune barrier function and reduce the intestinal inflammatory response.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mice , Humans , Animals , Mannose , Dextran Sulfate/toxicity , Interleukin-6 , Tumor Necrosis Factor-alpha , Occludin/genetics , Quality of Life , Colitis/chemically induced , Colitis/therapy , Colitis/metabolism , Sodium Chloride , Sodium Chloride, Dietary , Body Weight
10.
Alzheimers Dement (Amst) ; 16(1): e12564, 2024.
Article in English | MEDLINE | ID: mdl-38476637

ABSTRACT

INTRODUCTION: We assessed whether midlife sensory and motor functions added to prediction models using the Cardiovascular Risk Factors, Aging, and Incidence of Dementia Score (CAIDE) and Framingham Risk Score (FRS) improve risk predictions of 10-year changes in biomarkers of neurodegeneration and Alzheimer's disease. METHODS: Longitudinal data of N = 1529 (mean age 49years) Beaver Dam Offspring Study participants from baseline, 5-year, and 10-year follow-up were included. We tested whether including baseline sensory (hearing, vision, olfactory) impairment and motor function measures improves CAIDE or FRS risk predictions of 10-year incidence of biomarker positivity of serum-based neurofilament light chain (NfL) and amyloid beta (Aß)42/Aß40 using logistic regression. RESULTS: Adding sensory and motor measures to CAIDE-only and FRS-only models significantly improved NfL and Aß42/Aß40 positivity predictions in adults above the age of 55. DISCUSSION: Including midlife sensory and motor function improved long-term biomarker positivity predictions. Non-invasive sensory and motor assessments could contribute to cost-effective screening tools that identify individuals at risk for neurodegeneration early to target interventions and preventions. Highlights: Sensory and motor measures improve risk prediction models of neurodegenerative biomarkersSensory and motor measures improve risk prediction models of AD biomarkersPrediction improvements were strongest in late midlife (adults >55 years of age)Sensory and motor assessments may help identify high-risk individuals early.

11.
J Colloid Interface Sci ; 664: 487-499, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38484517

ABSTRACT

Na3V2(PO4)3(NVP) is an ideal cathode material for sodium ion battery due to its stable three-dimensional frame structure and high operating voltage. However, the low intrinsic conductivity and serious structural collapse limit its further application. In this work, a simultaneous optimized Na3V1.96Ru0.04(PO4)3/C@CNTs cathode material is synthesized by a simple sol-gel method. Specifically, the ionic radius of Ru3+ is slightly larger than that of V3+ (0.68 Å vs 0.64 Å), which not only ensures the feasibility of Ru3+ replacing V3+ site, but also appropriately expands the migration channel of sodium ions in NVP and stabilizes the structure, effectively improving the diffusion efficiency of sodium ions. Moreover, CNTs construct a three-dimensional conductive network between the grains, reducing the impedance at the interface and effectively improving the electronic conductivity. Ex-situ XRD analysis at different SOC were performed to determine the change in the crystal structure of Ru3+doped Na3V2(PO4)3, and the refinement results simultaneously demonstrate the relatively low volume shrinkage value of less than 3 % during the de-intercalation process, further verifying the stabilized crystal construction after Ru3+ substitution. Furthermore, the ex-situ XRD/SEM/CV/EIS after cycling indicate the significantly improved kinetic characteristics and enhanced structural stability. Notably, the modified Na3V1.96Ru0.04(PO4)3/C@CNTs reveals superior rate capability and ultralong cyclic performance. It submits high capacities of 82.3/80.9 mAh g-1 at 80/120C and maintains 71.3/59.6 mAh g-1 after 14800/6250 cycles, indicating excellent retention ratios of 86.6 % and 73.6 %, respectively. This work provides a multi-modification strategy for the realization of high-performance cathode materials, which can be widely applied in the optimization of various materials.

12.
J Colloid Interface Sci ; 664: 573-587, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38490033

ABSTRACT

Na3V2(PO4)3 (NVP) encounters significant obstacles, including limited intrinsic electronic and ionic conductivities, which hinder its potential for commercial feasibility. Currently, the substitution of V3+ with Mn2+ is proposed to introduce favorable carriers, enhancing the electronic conductivity of the NVP system while providing structural support and stabilizing the NASICON framework. This substitution also widens the Na+ migration pathways, accelerating ion transport. Furthermore, to bolster stability, Al2O3 coating is applied to suppress the dissolution of transition metal Mn in the electrolyte. Notably, the Al2O3 coating serves a triple role in reducing HClO4 concentration in the electrolyte, inhibiting Mn dissolution, and functioning as the ion-conducting phase. Likewise, carbon nanotubes (CNTs) effectively hinder the agglomeration of active particles during high-temperature sintering, thereby optimizing the conductivity of NVP system. In addition, the excellent structural stability is investigated by in situ XRD measurement, effectively improving the volume collapse during Na+ de-embedding. Moreover, the Na3V5.92/3Mn0.04(PO4)3/C@CNTs@1wt.%Al2O3 (NVMP@CNTs@1wt.%Al2O3) possesses unique porous structure, promoting rapid Na+ transport and increasing the interface area between the electrolyte and the cathode material. Comprehensively, the NVMP@CNTs@1wt.%Al2O3 sample demonstrates a remarkable reversible specific capacity of 122.6 mAh/g at 0.1 C. Moreover, it maintains a capacity of 115.9 mAh/g at 1 C with a capacity retention of 90.2 mAh/g after 1000 cycles. Even at 30 C, it achieves a capacity of 87.9 mAh/g, with a capacity retention rate of 84.87 % after 6000 cycles. Moreover, the NVMP@CNTs@1wt.%Al2O3//CHC full cell can deliver a high reversible capacity of 205.5 mAh/g at 0.1 C, further indicating the superior application potential in commercial utilization.

13.
Photoacoustics ; 36: 100592, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38322619

ABSTRACT

Methane (CH4) is a greenhouse gas as well as being flammable and explosive. In this manuscript, quartz-enhanced photoacoustic spectroscopy (QEPAS) and heterodyne QEPAS (H-QEPAS) exploring a self-designed quartz tuning fork (QTF) with resonance frequency (f0) of ∼8.7 kHz was utilized to achieve sensitive CH4 detection. Compared with the standard commercial 32.768 kHz QTF, this self-designed QTF with a low f0 and large prong gap has the merits of long energy accumulation time and low optical noise. The strongest line located at 6057.08 cm-1 in the 2v3 overtone band of CH4 was chosen as the target absorption line. A diode laser with a high output power of > 30 mW was utilized as the excitation source. Acoustic micro-resonators (AmRs) were added to the sensor architecture to amplify the intensity of acoustic waves. Compared to the bare QTF, after the addition of AmRs, a signal enhancement of 149-fold and 165-fold were obtained for QEPAS and H-QEPAS systems, respectively. The corresponding minimum detection limits (MDLs) were 711 ppb and 1.06 ppm for QEPAS and H-QEPAS sensors. Furthermore, based on Allan variance analysis the MDLs can be improved to 19 ppb and 27 ppb correspondingly. Compared to the QEPAS sensor, the H-QEPAS sensor shows significantly shorter measurement timeframes, allowing for measuring the gas concentration quickly while simultaneously obtaining f0 of QTF.

14.
Medicine (Baltimore) ; 103(8): e37277, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394541

ABSTRACT

BACKGROUND: Huangqi (Radix Astragali) is a natural medicine with a wide range of uses. The research related to Huangqi is getting hotter and the number of publications is gradually increasing. This study aims to explore the current status and emerging trends of Huangqi-related research. METHOD: Huangqi-related literature was systemically obtained from the Web of Science database. The CiteSpace, VOSviewer, and, R package "Bibliometrix" tools were used to analyze the number of publications, countries, research institutions, journals, authors, keywords, references, and trends. RESULTS: A total of 2255 papers were retrieved for analysis. These papers were written by 11,247 authors from 1927 institutions in 71 countries, published in 570 journals, and cited 73,534 references from 11,553 journals. From 1999 to 2022, the number of publications gradually increased. China was the country with the highest number of publications. The most prolific institution was Shanghai University of Chinese Medicine. Evidence-Based Complementary and Alternative Medicine was the journal publishing the most Huangqi-related literature. Dr Karl Wah Keung Tsim was the authors with the most output publications. The Review, entitle "Review of the Botanical Characteristics, Phytochemistry, and Pharmacology of Astragalus membranaceous (Huangqi)," was the reference being cited most frequently. The major keywords were apoptosis, oxidative stress, and inflammation. Gut microbiota and epithelial-mesenchymal transitions were new research hotspots in recent years. CONCLUSION: This study used quantitative and visual analysis of Huangqi to provide insights into the research priorities, frontier research hotspots, and future research trends in this field.


Subject(s)
Astragalus propinquus , Drugs, Chinese Herbal , Plants, Medicinal , Humans , China , Drugs, Chinese Herbal/therapeutic use , Bibliometrics
15.
Nat Commun ; 15(1): 1646, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388532

ABSTRACT

Adipose tissue macrophages can promote beige adipose thermogenesis by altering local sympathetic activity. Here, we perform sympathectomy in mice and further eradicate subcutaneous adipose macrophages and discover that these macrophages have a direct beige-promoting function that is independent of sympathetic system. We further identify adipocyte Ets1 as a vital mediator in this process. The anti-inflammatory M2 macrophages suppress Ets1 expression in adipocytes, transcriptionally activate mitochondrial biogenesis, as well as suppress mitochondrial clearance, thereby increasing the mitochondrial numbers and promoting the beiging process. Male adipocyte Ets1 knock-in mice are completely cold intolerant, whereas male mice lacking Ets1 in adipocytes show enhanced energy expenditure and are resistant to metabolic disorders caused by high-fat-diet. Our findings elucidate a direct communication between M2 macrophages and adipocytes, and uncover a function for Ets1 in responding to macrophages and negatively governing mitochondrial content and beige adipocyte formation.


Subject(s)
Adipocytes, Beige , Adipogenesis , Animals , Male , Mice , Adipocytes/metabolism , Adipocytes, Beige/metabolism , Adipogenesis/genetics , Adipose Tissue/metabolism , Adipose Tissue, White/metabolism , Macrophages/metabolism , Obesity/metabolism , Thermogenesis/genetics
16.
Cardiovasc Diabetol ; 23(1): 76, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38378553

ABSTRACT

BACKGROUND: The triglyceride-glucose (TyG) index is considered a dependable biomarker for gauging insulin resistance. The atherogenic index of plasma (AIP) represents a marker reflecting atherosclerosis. However, there is currently no study specifically exploring the associations of these two biomarkers with the severity of new-onset coronary artery disease (CAD) under different glucose metabolic states. Therefore, this study aims to evaluate the correlations of these two biomarkers with CAD severity in patients newly diagnosed with CAD under various glucose metabolism conditions. METHOD: Totally 570 subjects first administered coronary angiography were enrolled, including 431 first diagnosed CAD patients and 139 non-CAD patients. CAD severity  was gauged by the quantity of narrowed arteries (single-vessel and multi-vessel CAD). According to WHO diabetes guidelines, glucose metabolic states were divided into normal glucose regulation (NGR), pre-diabetes mellitus (Pre-DM), and diabetes mellitus (DM). The relationships of the TyG index and AIP with CAD severity were validated by logistic regression analysis, including adjustment for traditional cardiovascular risk elements and medical treatments. Their predictive efficacy for CAD was evaluated by receiver operating characteristic (ROC) curves. RESULT: The TyG index and AIP were independently correlated with CAD in accordance with logistic regression analysis (both P < 0.05). Regardless of the glucose metabolic states, there was no statistical correlation between the TyG index and CAD severity. However, AIP in NGR patients was significantly related to CAD severity (P < 0.05). The areas under the curve of the TyG index and AIP for predicting CAD were 0.682 and 0.642 (both P < 0.001), respectively, and their optimal cut-off values were 3.210 (Youden index: 0.305) and 0.095 (Youden index:0.246), respectively. CONCLUSION: The TyG index and AIP have significant associations with CAD. The TyG index had no association with CAD severity, regardless of glucose metabolic states. AIP exhibited a discernible link with CAD severity in NGR patients, but not in the pre-DM or DM populations. The TyG index and AIP have similar predictive values for new-onset CAD.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus , Humans , Glucose , Triglycerides , Blood Glucose/metabolism , Risk Factors , Diabetes Mellitus/diagnosis , Biomarkers
17.
QJM ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38390964

ABSTRACT

Lysine crotonylation is a newly identified posttranslational modification that is different from the widely studied lysine acetylation in structure and function. In the last dozen years, great progress has been made in lysine crotonylation-related studies, and lysine crotonylation is involved in reproduction, development, and disease. In this review, we highlight the similarities and differences between lysine crotonylation and lysine acetylation. We also summarize the methods and tools for the detection and prediction of lysine crotonylation. At the same time, we outline the recent advances in understanding the mechanisms of enzymatic and metabolic regulation of lysine crotonylation, as well as the regulating factors that selectively recognize this modification. Particularly, we discussed how dynamic changes in crotonylation status maintain physiological health and result in the development of disease. This review not only points out the new functions of lysine crotonylation but also provides new insights and exciting opportunities for managing various diseases.

18.
J Colloid Interface Sci ; 660: 277-289, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38244495

ABSTRACT

Na3V2(PO4)3 (NVP), with unique Na super ionic conductivity (NASICON) framework, has become an prospective cathode material. However, the low electronic conductivity and poor structural stability limit its further development. Currently, the optimized carbon nanotubes (CNTs) by selenium doping are utilized to modify NVP system for the first time. Notably, the introduction of selenium in CNTs promotes to generate more defects, resulting in abundant active sites for the de-intercalation of Na+ to achieve more pseudocapacitance. Moreover, the newly formative C-Se bonds possess much stronger bond energy than the original CC (586.6 KJ mol-1 vs 377.4 KJ mol-1) bonds. The structure arrangement of the original CNTs is significantly improved by the doped selenium element, indicating that an enhanced carbon skeleton could be obtained to sustain the structural stability of NVP system. Furthermore, the excess selenium can be doped into the bulk of NVP crystal to replace of partial oxygen. Due to the larger ionic of Se2- (1.98 Å vs 1.4 Å of O2-), the VSe6 group has larger framework, which provides a broadened pathway for Na+ migration to improve the kinetic characteristics. Accordingly, the modified NVP@CNTs:Se = 1:1 sample exhibits superior rate capability and cyclic performance. It reveals high capacities of 78.6 and 76.5 mAh/g at 20 and 60C, maintaining 65.4 and 53.8 mAh/g after 5000 and 7000 cycles with high capacity retention of 84.49 % and 70.32 %, respectively. The assembled NVP@CNTs:Se = 1:1//CHC full cell delivers a high value of 153.6 mAh/g, suggesting the optimized sample also behaves excellent application potentials.

19.
J Colloid Interface Sci ; 660: 356-369, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38244502

ABSTRACT

The development of Na3V2(PO4)3 (NVP) has been severely hindered by low conductivity and unstable crystal structure. A simultaneously optimized strategy of Na-rich and Sn substitution is proposed for the first time. SnX-NVP@CNTs with different doping gradients are successfully prepared by the facile sol-gel method. Notably, more hole carriers can be generated by introducing Sn2+, thus improving its electron transport efficiency. In addition, since Sn2+ ions have a larger ion radius; when replacing V3+ ions at pillar positions, the lattice spacing can be enlarged to improve the structural stability of electrode materials. Meanwhile, it is beneficial to the movement of deep-level Na+ ions and improves the utilization rate of electrode materials. Moreover, to achieve charge compensation, it is necessary to introduce excess Na+ to the Sn-doped NVP system, which will increase the number of Na+ involved in the deintercalation process and improve its reversible capacity. Furthermore, the dense coating of CNTs can form an efficient conductive network structure, which improves the electron transport rate and inhibits the accumulation of active grains to accelerate Na+ diffusion. Under the synergistic adjustment of Sn2+ doping and CNTs enwrapping, the prepared Sn0.07-NVP@CNTs exhibit a high reversible capacity of 115.1 mAh/g at 0.1C, and the capacity retention rate reaches 89.35 % after 2000 cycles at 10C. Even after 10,000 cycles at 60C, its reversible capacity dropped from the initial 75.9 to 51.3 mAh/g, with a capacity loss of only 0.003 % per cycle. Besides, the Sn0.07-NVP@CNTs//CHC full battery releases a capacity of 139.9 mAh/g, highlighting its great potential for actual applications.

20.
J Pharm Sci ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38237668

ABSTRACT

Poor stability and difficult uptake of natural polysaccharides have been the main problems in their application. The purpose of this study was to optimize the preparation conditions of Polygonatum cyrtonema Hua polysaccharides liposomes (PCPL) and to investigate the immune enhancement activity of PCPL in vitro and in vivo, with a view to discovering new ways of natural polysaccharide application. The optimal preparation conditions of PCPL were as follows: the adding amount of Tween 80 of 0.5 %, the ultrasound time of 2 min and the ultrasound times of once. Under these conditions, the entrapment efficiency, drug loading rate and particle size of PCPL were 38.033 %±0.050, 2.172 %±0.003 and 146 nm, which indicated that PCPL with small particle size could be prepared by the reverse-phase evaporation method. Furthermore, PCPL promoted proliferation, phagocytosis, and secretion of nitric oxide and related cytokines in RAW264.7 cells. Moreover, PCPL improved spleen and thymus indices, increased the number or proportion of red blood cells, platelets, and lymphocytes in the blood, and ameliorated spleen and thymus atrophy in immunosuppressed mice. This study provides a new idea for applying Polygonatum cyrtonema Hua polysaccharides (PCP) and references for studying other polysaccharides.

SELECTION OF CITATIONS
SEARCH DETAIL
...