Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Epigenetics ; 9: 89, 2017.
Article in English | MEDLINE | ID: mdl-28855971

ABSTRACT

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a multisystem developmental disorder frequently associated with heterozygous loss-of-function mutations of Nipped-B-like (NIPBL), the human homolog of Drosophila Nipped-B. NIPBL loads cohesin onto chromatin. Cohesin mediates sister chromatid cohesion important for mitosis but is also increasingly recognized as a regulator of gene expression. In CdLS patient cells and animal models, expression changes of multiple genes with little or no sister chromatid cohesion defect suggests that disruption of gene regulation underlies this disorder. However, the effect of NIPBL haploinsufficiency on cohesin binding, and how this relates to the clinical presentation of CdLS, has not been fully investigated. Nipbl haploinsufficiency causes CdLS-like phenotype in mice. We examined genome-wide cohesin binding and its relationship to gene expression using mouse embryonic fibroblasts (MEFs) from Nipbl+/- mice that recapitulate the CdLS phenotype. RESULTS: We found a global decrease in cohesin binding, including at CCCTC-binding factor (CTCF) binding sites and repeat regions. Cohesin-bound genes were found to be enriched for histone H3 lysine 4 trimethylation (H3K4me3) at their promoters; were disproportionately downregulated in Nipbl mutant MEFs; and displayed evidence of reduced promoter-enhancer interaction. The results suggest that gene activation is the primary cohesin function sensitive to Nipbl reduction. Over 50% of significantly dysregulated transcripts in mutant MEFs come from cohesin target genes, including genes involved in adipogenesis that have been implicated in contributing to the CdLS phenotype. CONCLUSIONS: Decreased cohesin binding at the gene regions is directly linked to disease-specific expression changes. Taken together, our Nipbl haploinsufficiency model allows us to analyze the dosage effect of cohesin loading on CdLS development.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , De Lange Syndrome/genetics , Gene Expression Profiling/methods , Haploinsufficiency , Proteins/genetics , Animals , Binding Sites , CCCTC-Binding Factor/chemistry , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , DNA Methylation , De Lange Syndrome/metabolism , Disease Models, Animal , Gene Expression , Gene Expression Regulation , Genome-Wide Association Study , Humans , Mice , Promoter Regions, Genetic , Protein Binding , Transcriptional Activation , Cohesins
2.
Hum Mutat ; 35(8): 998-1010, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24838473

ABSTRACT

Facioscapulohumeral dystrophy (FSHD) is one of the most prevalent muscular dystrophies. The majority of FSHD cases are linked to a decreased copy number of D4Z4 macrosatellite repeats on chromosome 4q (FSHD1). Less than 5% of FSHD cases have no repeat contraction (FSHD2), most of which are associated with mutations of SMCHD1. FSHD is associated with the transcriptional derepression of DUX4 encoded within the D4Z4 repeat, and SMCHD1 contributes to its regulation. We previously found that the loss of heterochromatin mark (i.e., histone H3 lysine 9 tri-methylation (H3K9me3)) at D4Z4 is a hallmark of both FSHD1 and FSHD2. However, whether this loss contributes to DUX4 expression was unknown. Furthermore, additional D4Z4 homologs exist on multiple chromosomes, but they are largely uncharacterized and their relationship to 4q/10q D4Z4 was undetermined. We found that the suppression of H3K9me3 results in displacement of SMCHD1 at D4Z4 and increases DUX4 expression in myoblasts. The DUX4 open reading frame (ORF) is disrupted in D4Z4 homologs and their heterochromatin is unchanged in FSHD. The results indicate the significance of D4Z4 heterochromatin in DUX4 gene regulation and reveal the genetic and epigenetic distinction between 4q/10q D4Z4 and the non-4q/10q homologs, highlighting the special role of the 4q/10q D4Z4 chromatin and the DUX4 ORF in FSHD.


Subject(s)
DNA, Satellite , Epigenesis, Genetic , Heterochromatin/metabolism , Homeodomain Proteins/genetics , Muscular Dystrophy, Facioscapulohumeral/genetics , Mutation , Animals , Base Sequence , Cell Line , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes, Human, Pair 10 , Chromosomes, Human, Pair 4 , Cricetinae , Gene Expression , Histones/genetics , Histones/metabolism , Homeodomain Proteins/metabolism , Humans , Mice , Molecular Sequence Data , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Myoblasts/metabolism , Myoblasts/pathology , Open Reading Frames , Primary Cell Culture , Sequence Homology, Nucleic Acid
3.
Biochim Biophys Acta ; 1839(3): 191-202, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24269489

ABSTRACT

Cohesins are conserved and essential Structural Maintenance of Chromosomes (SMC) protein-containing complexes that physically interact with chromatin and modulate higher-order chromatin organization. Cohesins mediate sister chromatid cohesion and cellular long-distance chromatin interactions affecting genome maintenance and gene expression. Discoveries of mutations in cohesin's subunits and its regulator proteins in human developmental disorders, so-called "cohesinopathies," reveal crucial roles for cohesins in development and cellular growth and differentiation. In this review, we discuss the latest findings concerning cohesin's functions in higher-order chromatin architecture organization and gene regulation and new insight gained from studies of cohesinopathies. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Disorders/metabolism , Gene Expression Regulation , Animals , Cell Cycle Proteins/genetics , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosome Disorders/genetics , Humans , Cohesins
4.
PLoS Genet ; 5(7): e1000559, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19593370

ABSTRACT

Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FSHD cases are not associated with D4Z4 repeat contraction (termed "phenotypic" FSHD), and their etiology remains undefined. We carried out chromatin immunoprecipitation analysis using D4Z4-specific PCR primers to examine the D4Z4 chromatin structure in normal and patient cells as well as in small interfering RNA (siRNA)-treated cells. We found that SUV39H1-mediated H3K9 trimethylation at D4Z4 seen in normal cells is lost in FSHD. Furthermore, the loss of this histone modification occurs not only at the contracted 4q D4Z4 allele, but also at the genetically intact D4Z4 alleles on both chromosomes 4q and 10q, providing the first evidence that the genetic change (contraction) of one 4qD4Z4 allele spreads its effect to other genomic regions. Importantly, this epigenetic change was also observed in the phenotypic FSHD cases with no D4Z4 contraction, but not in other types of muscular dystrophies tested. We found that HP1gamma and cohesin are co-recruited to D4Z4 in an H3K9me3-dependent and cell type-specific manner, which is disrupted in FSHD. The results indicate that cohesin plays an active role in HP1 recruitment and is involved in cell type-specific D4Z4 chromatin regulation. Taken together, we identified the loss of both histone H3K9 trimethylation and HP1gamma/cohesin binding at D4Z4 to be a faithful marker for the FSHD phenotype. Based on these results, we propose a new model in which the epigenetic change initiated at 4q D4Z4 spreads its effect to other genomic regions, which compromises muscle-specific gene regulation leading to FSHD pathogenesis.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Histones/metabolism , Muscular Dystrophy, Facioscapulohumeral/metabolism , Animals , Cricetinae , Euchromatin/metabolism , HeLa Cells , Heterochromatin/metabolism , Humans , Methylation , Methyltransferases/metabolism , Mice , Models, Molecular , Muscular Dystrophy, Facioscapulohumeral/genetics , Polymerase Chain Reaction , Repressor Proteins/metabolism , Tandem Repeat Sequences , Tumor Cells, Cultured , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL
...