Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 214, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167629

ABSTRACT

This paper reports the discovery that water can trigger a peculiar nuclear reaction and produce energy. Cavitation may induce unusual reactions through implosion of water vapor bubbles. Many of this research has been published formally or informally. We have conducted experiments using two reactor types made from multiple-pipe heat exchanger and found that the heat exchange process of water produces peculiar excess heat and abnormally high pressure leading to rupture of the reactor. Recently, we have tested another eight reactors. Interestingly, these reactors produce non-condensable gas. We suspected that they include 22Ne and CO2. We used a mass spectrometer (MS) to analyze 14 gas samples collected from 8 reactors, including ten samples showing a coefficient of performance COPx > 1.05 (with excess heat) and four having COPx < 1.05 (without excess heat). Several methods were adopted to identify the gas content. For CO2 identification, two methods are employed. For 22Ne identification, three methods are employed. All the results confirm that isotope 22Ne and regular CO2 really exist in the output gas from reactors determined to have excess heat. We conjecture a possible mechanism to produce 22Ne and CO2 and find out that 12C and isotope 17O are the intermediate. They finally form isotope gases containing 17O, including H2O-17 (heavy-oxygen water), isotope O2 (16O-17O), and isotope CO2 (12C-16O-17O). In the excess heat producing reactors, all these gasses were detected by MS in the absence of 20Ne and 21Ne. The observed isotope gases produced from reactors having excess heat verifies that water can trigger a peculiar nuclear reaction and produce energy.

2.
Nanoscale ; 16(3): 1188-1196, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38113050

ABSTRACT

Generating diverse ferroelectric ice nanotubes (NTs) efficiently has always been challenging, but matters in nanomaterial synthesis and processing technology. In the present work, we propose a method of growing ice NT forests in a single cooling process. A three-dimensional (3D) graphene structure was selected to behave as a representative container in which a batch of (5, 0) ice NTs was formed simultaneously under the cooling process from molecular dynamics simulation. Other similar 3D graphene structures but with different hole configurations, like uniform triangle or both triangle and pentagon, were also tested, revealing that ice NTs with different tube indices, i.e. both (3, 0) and (5, 0), could also be formed at the same time. Intriguingly, the orientations of the dipole moments of the water molecules of an ice NT formed were independent of each other, making the net ferroelectricity of the whole system weakened or even cancelled. An electric field could help change the orientation of the water molecules of the already obtained ice NTs and even twist the tube to be a spiral (5, 1) one if it was applied during the cooling process, such that the net ferroelectricity was greatly improved. The underlying physical mechanism of all phase transition phenomena, including the improvement of the ferroelectricity under an electric field, were explored in depth from the phase transition curves and structural point of view. The obtained results are of significant application value for improving the preparation efficiency of nano-ferroelectric materials, which are prosperous in nano-devices.

3.
Phys Chem Chem Phys ; 25(16): 11613-11619, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37042046

ABSTRACT

The pioneering work on the newly experimentally synthesized biphenylene network C has triggered a worldwide tide of research on its family material counterparts. In this study, a biphenylene network BN structure was theoretically characterized by density functional theory (DFT) calculations. Initially, the structure's mechanical and thermal stabilities were evaluated. There were no imaginary frequencies in the phonon dispersion curve, indicating that the structure was mechanically stable. Additionally, the energy barrier for forming a biphenylene network BN structure from perfect pristine 2D h-BN is substantially less than that for forming a biphenylene network C from a perfect graphene sheet, as can be explained from the greater structure distortion in the biphenylene network BN with lower bond stress which thus caused lower energy. The electronic band structure and detailed projected density of states analysis indicated that the biphenylene network BN is a semiconductor with the valence band maximum (VBM) and the conduction band minimum (CBM) states from the pz orbitals of N and B atoms with sp2 hybridization. Finally, a bilayer structure was also proposed. Our obtained results provide more insights into two-dimensional biphenylene network BN based structures and those family materials which could be widely used in relevant nanoelectronic devices.

4.
Biomaterials ; 291: 121864, 2022 12.
Article in English | MEDLINE | ID: mdl-36343608

ABSTRACT

Exosome-based regenerative therapies are potentially easier to manufacture and safer to apply compared to cell-based therapies. However, many questions remain about how to bio-manufacture reproducible and potent exosomes using animal-free reagents. Here we evaluate the hypothesis that designer biomaterial substrates can be used to alter the potency of exosomes secreted by human induced pluripotent stem cells (iPSCs). Two animal-free designer matrices were fabricated based on recombinant elastin-like polypeptides (ELPs): one including a cell-adhesive RGD ligand and a second with a non-adhesive RDG peptide. While iPSCs cultured on these two substrates and Matrigel-coated controls had similar levels of proliferation, the RDG-ELP substrate significantly increased protein expression of stemness markers OCT4 and SOX2 and suppressed spontaneous differentiation compared to those on RGD-ELP. The pro-survival potency of iPSC-derived exosomes was evaluated using three distinct stress tests: serum starvation in murine fibroblasts, hypoxia in human endothelial cells, and hyperosmolarity in canine kidney cells. In all three cases, exosomes produced by iPSCs grown on RDG-ELP substrates had similar pro-survival effects to those produced using iPSCs grown on Matrigel, while use of RGD-ELP substrates led to significantly reduced exosome potency. These data demonstrate that recombinant substrates can be designed for the robust bio-manufacturing of iPSC-derived, pro-survival exosomes.


Subject(s)
Exosomes , Induced Pluripotent Stem Cells , Humans , Animals , Dogs , Mice , Elastin/metabolism , Exosomes/metabolism , Endothelial Cells , Peptides/pharmacology , Peptides/metabolism , Oligopeptides/pharmacology , Oligopeptides/metabolism
5.
Cell Oncol (Dordr) ; 45(4): 621-638, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35849310

ABSTRACT

PURPOSE: Molecular composition of circulating small extracellular vesicles (EVs) does not merely reflect the cells of origin, but also is enriched in specific biomolecules directly associated with the cellular transformation. However, while most of the currently identified EV-miRs are only geared towards one-dimensional disease detection, their application for long-term tracking and treatment response monitoring has been largely elusive. METHODS: We established and optimized a rapid, sensitive and robust liquid biopsy sampling method, and further used small RNA sequencing to comprehensively catalogue EV-miRomes in association with the progression and outcome of metastatic colorectal cancer (mCRC). RESULTS: By cross-comparison of EV-miRomes (n = 290) from multi-stage and longitudinal cohorts, we uncovered a 15-EV-miR signature with dual detection and long-term monitoring of tumor size progression for mCRC. From this panel, EV-miR-320c was uncovered as a strong clinical marker - aside from its diagnostic power and a therapeutic monitoring performance superior to carcinoembryonic antigen (CEA), its high expression has also been linked to lower overall survival and a greater likelihood of disease recurrence. Further, integrative analyses of tissue transcriptomic and liquid biopsy implicated this 15-EV-miR signature in programming the mesenchymal-epithelial transition (MET) for distant localization of the metastasized cells and also in creating a tumor-favoring metastatic niche. CONCLUSION: Our clinically-oriented delineation of the mCRC-associated circulating EV-miRomes systematically revealed the functional significance of these liquid biopsy markers and further strengthen their translational potential in mCRC therapeutic monitoring.


Subject(s)
Colonic Neoplasms , Extracellular Vesicles , MicroRNAs , Colonic Neoplasms/metabolism , Extracellular Vesicles/genetics , Humans , Liquid Biopsy , MicroRNAs/genetics , MicroRNAs/metabolism , Sequence Analysis, RNA
6.
Cell Death Dis ; 13(7): 629, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35858923

ABSTRACT

Recent findings have implicated long noncoding RNAs (lncRNAs) as pivotal gene regulators for diverse biological processes, despite their lack of protein-coding capabilities. Accumulating evidence suggests the significance of lncRNAs in mediating cell signaling pathways, especially those associated with tumorigenesis. Consequently, lncRNAs have emerged as novel functional regulators and indicators of cancer development and malignancy. Recent transcriptomic profiling has recognized a tumor-biased expressed lncRNA, the HOXA10-AS transcript, whose expression is associated with patient survival. Functional cell-based assays show that the HOXA10-AS transcript is essential in the regulation of oral cancer growth and metastasis. LncRNA expression is also associated with drug sensitivity. In this study, we identify that HOXA10-AS serves as a modular scaffold for TP63 mRNA processing and that such involvement regulates cancer growth. These findings provide a functional interpretation of lncRNA-mediated molecular regulation, highlighting the significance of the lncRNA transcriptome in cancer biology.


Subject(s)
Mouth Neoplasms , RNA, Long Noncoding , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Homeobox A10 Proteins , Humans , Mouth Neoplasms/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcriptome
7.
Phys Chem Chem Phys ; 24(5): 3207-3215, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35044393

ABSTRACT

During the past few years, there has been a flurry of investigations on the lattice thermal transport of three-dimensional (3D) graphene, however, few studies have detailed how to adjust this property effectively using the presently available engineering technologies. In this work, the thermal transport properties of a porous single layer carbon honeycomb (SL-dCHC-2) and its mechanical response are systematically studied. We show that the thermal conductivity of SL-dCHC-2 can be adjusted effectively by varying the tensile strain, and its value is enhanced by up to 11.3 times with 8% strain as compared to the unstrained case. This value is significantly larger than what was observed for other two-dimensional (2D) materials such as silicene (∼7 times larger). This outstanding behavior is explained by the phonon mode level, indicating that a profound increase of the thermal conductivity under tensile strain is attributed to the enhancement of the phonon lifetime. In addition, the trend for the root mean squared displacement, which is closely related to the phonon anharmonic effect, correlates with the non-monotonic response of the dimerized C-C bonds at the linkage of the structure. These investigations and obtained results provide important guidance to develop 3D carbon honeycombs for several different purposes, such as for use as molecular sieves and in water purification applications.

8.
RNA Biol ; 18(5): 796-808, 2021 05.
Article in English | MEDLINE | ID: mdl-33406999

ABSTRACT

The pathogenic human enterovirus EV-A71 has raised serious public health concerns. A hallmark of EV-A71 infection is the distortion of host transcriptomes in favour of viral replication. While high-throughput approaches have been exploited to dissect these gene dysregulations, they do not fully capture molecular perturbations at the single-cell level and in a physiologically relevant context. In this study, we applied a single-cell RNA sequencing approach on infected differentiated enterocyte cells (C2BBe1), which model the gastrointestinal epithelium targeted initially by EV-A71. Our single-cell analysis of EV-A71-infected culture provided several lines of illuminating observations: 1) This systems approach demonstrated extensive cell-to-cell variation in a single culture upon viral infection and delineated transcriptomic differences between the EV-A71-infected and bystander cells. 2) By analysing expression profiles of known EV-A71 receptors and entry facilitation factors, we found that ANXA2 was closely correlated in expression with the viral RNA in the infected population, supporting its role in EV-A71 entry in the enteric cells. 3) We further catalogued dysregulated lncRNAs elicited by EV-A71 infection and demonstrated the functional implication of lncRNA CYTOR in promoting EV-A71 replication. Viewed together, our single-cell transcriptomic analysis illustrated at the single-cell resolution the heterogeneity of host susceptibility to EV-A71 and revealed the involvement of lncRNAs in host antiviral response.


Subject(s)
Enterovirus A, Human/pathogenicity , Host-Pathogen Interactions/genetics , Transcriptome , Cells, Cultured , Enterocytes/metabolism , Enterocytes/pathology , Enterocytes/virology , Enterovirus A, Human/genetics , Enterovirus A, Human/immunology , Enterovirus Infections/genetics , Enterovirus Infections/immunology , Enterovirus Infections/pathology , Enterovirus Infections/virology , Gene Expression Profiling , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Host-Pathogen Interactions/immunology , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/virology , RNA, Long Noncoding/genetics , Single-Cell Analysis , Virus Replication/genetics
9.
Front Immunol ; 12: 743448, 2021.
Article in English | MEDLINE | ID: mdl-35095836

ABSTRACT

Colorectal cancer (CRC) is a major cause of cancer mortality and morbidity. Despite advances in chemotherapy and targeted therapy, unsustainable clinical benefit was noted due to recurrence and therapy resistance. The immune status of the cancer patient may affect the effectiveness of disease treatments. The dynamic change in the T-cell receptor (TCR) repertoire might be a clinical parameter for monitoring treatment responses. In this study, we aimed to determine the characteristics and clinical significance of the TCR repertoire in patients with unresectable metastatic colorectal cancer (mCRC). Herein, we comprehensively profile 103 peripheral blood samples from 20 healthy controls and 16 CRC patients with a follow-up of 98 to 452 days to identify hypervariable rearrangements of the TCRα and TCRß repertoires using high-throughput sequencing. We found that TCRα repertoires, TCRß repertoires, and CDR3 clonotypes were altered in mCRC patients compared with healthy controls. The diversity of TCR repertoires and CDR3 clonotypes decreased in most mCRC patients after therapy. Furthermore, compared with baseline TCR diversity, patients whose TCR diversity dropped considerably during therapy had better treatment responses, including lower CEA and CA19-9 levels and smaller tumor sizes. TCR baseline diversity was also significantly associated with partial response (PR) status (odds ratio: 5.29, p = 0.04). In conclusion, the present study demonstrated the association between dynamic changes in TCR diversity during chemotherapy and clinical outcomes as well as the potential utility of the TCR repertoire in predicting the prognosis of cancer treatment.


Subject(s)
Colorectal Neoplasms/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Adult , Aged , Antigens, Tumor-Associated, Carbohydrate/genetics , Case-Control Studies , Colorectal Neoplasms/pathology , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Middle Aged , Prognosis
10.
Cells ; 9(8)2020 08 10.
Article in English | MEDLINE | ID: mdl-32785098

ABSTRACT

Deep sequencing technologies have revealed the once uncharted non-coding transcriptome of circular RNAs (circRNAs). Despite the lack of protein-coding potential, these unorthodox yet highly stable RNA species are known to act as critical gene regulatory hubs, particularly in malignancies. However, their mechanistic implications in tumor outcome and translational potential have not been fully resolved. Using RNA-seq data, we profiled the circRNAomes of tumor specimens derived from oral squamous cell carcinoma (OSCC), which is a prevalently diagnosed cancer with a persistently low survival rate. We further catalogued dysregulated circRNAs in connection with tumorigenic progression. Using comprehensive bioinformatics analyses focused on co-expression maps and miRNA-interaction networks, we delineated the regulatory networks that are centered on circRNAs. Interestingly, we identified a tumor-associated, pro-tumorigenic circRNA, named circFLNB, that was implicated in maintaining several tumor-associated phenotypes in vitro and in vivo. Correspondingly, transcriptome profiling of circFLNB-knockdown cells showed alterations in tumor-related genes. Integrated in silico analyses further deciphered the circFLNB-targeted gene network. Together, our current study demarcates the OSCC-associated circRNAome, and unveils a novel circRNA circuit with functional implication in OSCC progression. These systems-based findings broaden mechanistic understanding of oral malignancies and raise new prospects for translational medicine.


Subject(s)
Carcinoma, Squamous Cell/genetics , Filamins/genetics , Mouth Neoplasms/genetics , RNA, Circular/genetics , Transcriptome , Animals , Computational Biology/methods , Gene Knockdown Techniques , Gene Regulatory Networks , HeLa Cells , Humans , Male , Mice , Mice, Inbred NOD , MicroRNAs/genetics , RNA Interference , RNA, Messenger/genetics , Xenograft Model Antitumor Assays
11.
FASEB J ; 34(1): 1107-1121, 2020 01.
Article in English | MEDLINE | ID: mdl-31914708

ABSTRACT

The nucleolus is best known for its cellular role in regulating ribosome production and growth. More recently, an unanticipated role for the nucleolus in innate immunity has recently emerged whereby downregulation of fibrillarin and nucleolar contraction confers pathogen resistance across taxa. The mechanism of this downregulation, however, remains obscure. Here we report that rather than fibrillarin itself being the proximal factor in this pathway, the key player is a fibrillarin-stabilizing deubiquitinylase USP-33. This was discovered by a candidate-gene search of Caenorhabditis elegans in which CED-3 caspase was revealed to execute targeted cleavage of USP-33, thus destabilizing fibrillarin. We also showed that cep-1 and ced-3 mutant worms altered nucleolar size and decreased antimicrobial peptide gene, spp-1, expression rendering susceptibility to bacterial infection. These phenotypes were reversed by usp-33 knockdown, thus linking the CEP-1-CED-3-USP-33 pathway with nucleolar control and resistance to bacterial infection in worms. Parallel experiments with the human analogs of caspases and USP36 revealed similar roles in coordinating these two processes. In summary, our work outlined a conserved cascade that connects cell death signaling to nucleolar control and innate immune response.


Subject(s)
Bacterial Infections/metabolism , Caenorhabditis elegans/microbiology , Cell Nucleolus/metabolism , Deubiquitinating Enzymes/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin/metabolism , Animals , Apoptosis , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , HeLa Cells , Humans , Microscopy, Fluorescence , Pseudomonas Infections , RNA Interference , Staphylococcal Infections , Staurosporine/pharmacology , Ubiquitin Thiolesterase/metabolism
12.
RNA Biol ; 16(9): 1263-1274, 2019 09.
Article in English | MEDLINE | ID: mdl-31135270

ABSTRACT

The innate immune system is the frontline host protection against pathogens. Effective antiviral immunity is elicited upon recognition of viral RNAs by the host pattern recognition receptors. One of the major viral RNA sensors is retinoic acid inducible gene-1, which triggers the production of interferons (IFNs). In turn, this protective response requires another viral sensor and immunity factor interferon-inducible protein kinase RNA activator (PACT/PRKRA). Here, we report the identification and characterization of a novel antisense PACT gene that expresses a non-coding RNA in a convergent and interferon-inducible manner. Publicly available gene structure and expression data revealed that this gene, that we termed ASPACT, overlaps with the 3' -end of the PACT locus and is highly expressed during viral infection. Our results confirm the IFN-ß-inducibility of ASPACT, which is dependent on STAT-1/2. We further discovered that downregulation of ASPACT impacts both the expression and localization of the PACT transcript. At the transcription level, ChIP and ChIRP assays demonstrated that the ASPACT non-coding RNA occupies distinct chromatin regions of PACT gene and is important for promoter recruitment of the epigenetic silencer HDAC1. In parallel, ASPACT was also found to mediate nuclear retention of the PACT mRNA via direct RNA-RNA interaction, as revealed by RNA antisense purification assay. In summary, our results support the model that the non-coding RNA ASPACT acts as a negative regulator of PACT at multiple levels, and reveal a novel regulator of the viral counteractive response.


Subject(s)
RNA, Antisense/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Cell Nucleus/metabolism , Epigenesis, Genetic , HEK293 Cells , HeLa Cells , Histone Deacetylase 1/metabolism , Humans , Immunity, Innate , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Transcription, Genetic
13.
EMBO Rep ; 20(5)2019 05.
Article in English | MEDLINE | ID: mdl-30948460

ABSTRACT

Adenosine deaminase acting on RNA (ADAR)-catalyzed adenosine-to-inosine RNA editing is potentially dysregulated in neoplastic progression. However, how this transcriptome recoding process is functionally correlated with tumorigenesis remains largely elusive. Our analyses of RNA editome datasets identify hypoxia-related genes as A-to-I editing targets. In particular, two negative regulators of HIF-1A-the natural antisense transcript HIF1A-AS2 and the ubiquitin ligase scaffold LIMD1-are directly but differentially modulated by ADAR1. We show that HIF1A-AS2 antagonizes the expression of HIF-1A in the immediate-early phase of hypoxic challenge, likely through a convergent transcription competition in cis ADAR1 in turn suppresses transcriptional progression of the antisense gene. In contrast, ADAR1 affects LIMD1 expression post-transcriptionally, by interfering with the cytoplasmic translocation of LIMD1 mRNA and thus protein translation. This multi-tier regulation coordinated by ADAR1 promotes robust and timely accumulation of HIF-1α upon oxygen depletion and reinforces target gene induction and downstream angiogenesis. Our results pinpoint ADAR1-HIF-1α axis as a hitherto unrecognized key regulator in hypoxia.


Subject(s)
Adenosine Deaminase/genetics , Cell Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , RNA-Binding Proteins/genetics , Signal Transduction/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Cytoplasm/genetics , Humans , LIM Domain Proteins/genetics , MCF-7 Cells , RNA Editing/genetics , RNA, Messenger/genetics , Transcription, Genetic/genetics
14.
J Biol Chem ; 293(26): 10158-10171, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29769310

ABSTRACT

Processing of the eukaryotic transcriptome is a dynamic regulatory mechanism that confers genetic diversity, and splicing and adenosine to inosine (A-to-I) RNA editing are well-characterized examples of such processing. Growing evidence reveals the cross-talk between the splicing and RNA editing, but there is a paucity of substantial evidence for its mechanistic details and contribution in a physiological context. Here, our findings demonstrate that tumor-associated differential RNA editing, in conjunction with splicing machinery, regulates the expression of variants of HNRPLL, a gene encoding splicing factor. We discovered an HNRPLL transcript variant containing an additional exon 12A (E12A), which is a substrate of ADAR1 and ADAR2. Adenosine deaminases acting on RNA (ADAR) direct deaminase-dependent expression of the E12A transcript, and ADAR-mediated regulation of E12A is largely splicing-based, and does not affect the stability or nucleocytoplasmic distribution of the transcript. Furthermore, ADAR-mediated modification of exon 12A generates an enhancer for the oncogenic splicing factor SRSF1 and consequently promotes the frequency of alternative splicing. Gene expression profiling by RNA-seq revealed that E12A acts distinctly from HNRPLL and regulates a set of growth-related genes, such as cyclin CCND1 and growth factor receptor TGFBR1 Accordingly, silencing E12A expression leads to impaired clonogenic ability and enhanced sensitivity to doxorubicin, thus highlighting the significance of this alternative isoform in tumor cell survival. In summary, we present the interplay of RNA editing and splicing as a regulatory mechanism of gene expression and also its physiological relevance. These findings extend our understanding of transcriptional dynamics and provide a mechanistic explanation to the link of RNA editors to tumorigenesis.


Subject(s)
Alternative Splicing , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Introns/genetics , RNA Editing , Antigens, Surface/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cyclin D1/genetics , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , HeLa Cells , Humans , RNA, Messenger/genetics , Serine-Arginine Splicing Factors/metabolism , Transcription, Genetic/genetics
15.
J Environ Manage ; 203(Pt 3): 1062-1071, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28545948

ABSTRACT

The working gas turbine blades are exposed to the environment of high temperature, especially in the leading-edge region. The mist/air two-phase impingement cooling has been adopted to enhance the heat transfer on blade surfaces and investigate the leading-edge cooling effectiveness. An Euler-Lagrange particle tracking method is used to simulate the two-phase impingement cooling on the blade leading-edge. The mesh dependency test has been carried out and the numerical method is validated based on the available experimental data of mist/air cooling with jet impingement on a concave surface. The cooling effectiveness on three target surfaces is investigated, including the smooth and the ribbed surface with convex/concave columnar ribs. The results show that the cooling effectiveness of the mist/air two-phase flow is better than that of the single-phase flow. When the ribbed surfaces are used, the heat transfer enhancement is significant, the surface cooling effectiveness becomes higher and the convex ribbed surface presents a better performance. With the enhancement of the surface heat transfer, the pressure drop in the impingement zone increases, but the incremental factor of the flow friction is smaller than that of the heat transfer enhancement.


Subject(s)
Cold Temperature , Hot Temperature , Phase Transition
16.
Aging Cell ; 16(4): 797-813, 2017 08.
Article in English | MEDLINE | ID: mdl-28514051

ABSTRACT

Cellular senescence is a permanent proliferative arrest triggered by genome instability or aberrant growth stresses, acting as a protective or even tumor-suppressive mechanism. While several key aspects of gene regulation have been known to program this cessation of cell growth, the involvement of the epigenetic regulation has just emerged but remains largely unresolved. Using a systems approach that is based on targeted gene profiling, we uncovered known and novel chromatin modifiers with putative link to the senescent state of the cells. Among these, we identified SETD8 as a new target as well as a key regulator of the cellular senescence signaling. Knockdown of SETD8 triggered senescence induction in proliferative culture, irrespectively of the p53 status of the cells; ectopic expression of this epigenetic writer alleviated the extent doxorubicin-induced cellular senescence. This repressive effect of SETD8 in senescence was mediated by directly maintaining the silencing mark H4K20me1 at the locus of the senescence switch gene p21. Further in support of this regulatory link, depletion of p21 reversed this SETD8-mediated cellular senescence. Additionally, we found that PPARγ acts upstream and regulates SETD8 expression in proliferating cells. Downregulation of PPARγ coincided with the senescence induction, while its activation inhibited the progression of this process. Viewed together, our findings delineated a new epigenetic pathway through which the PPARγ-SETD8 axis directly silences p21 expression and consequently impinges on its senescence-inducing function. This implies that SETD8 may be part of a cell proliferation checkpoint mechanism and has important implications in antitumor therapeutics.


Subject(s)
Cellular Senescence/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Epigenesis, Genetic , Fibroblasts/metabolism , Histone-Lysine N-Methyltransferase/genetics , PPAR gamma/genetics , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Cycle Checkpoints/radiation effects , Cell Line, Tumor , Cellular Senescence/drug effects , Cellular Senescence/radiation effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage , Doxorubicin/pharmacology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/radiation effects , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Humans , Hydrogen Peroxide/pharmacology , Lung/cytology , Lung/drug effects , Lung/metabolism , Lung/radiation effects , PPAR gamma/metabolism , Primary Cell Culture , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ultraviolet Rays
17.
Cell Death Dis ; 8(5): e2833, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28542129

ABSTRACT

Adenosine-to-inosine RNA editing constitutes a crucial component of the cellular transcriptome and critically underpins organism survival and development. While recent high-throughput approaches have provided comprehensive documentation of the RNA editome, its functional output remains mostly unresolved, particularly for events in the non-coding regions. Gene ontology analysis of the known RNA editing targets unveiled a preponderance of genes related to apoptosis regulation, among which proto-oncogenes XIAP and MDM2 encode two the most abundantly edited transcripts. To further decode this potential functional connection, here we showed that the main RNA editor ADAR1 directly targets this 3' UTR editing of XIAP and MDM2, and further exerts a negative regulation on the expression of their protein products. This post-transcriptional silencing role was mediated via the inverted Alu elements in the 3' UTR but independent of alteration in transcript stability or miRNA targeting. Rather, we discovered that ADAR1 competes transcript occupancy with the RNA shuttling factor STAU1 to facilitate nuclear retention of the XIAP and MDM2 mRNAs. As a consequence, ADAR1 may acquire functionality in part by conferring spatial distribution and translation efficiency of the target transcripts. Finally, abrogation of ADAR1 expression or catalytic activity elicited a XIAP-dependent suppression of apoptotic response, whereas ectopic expression reversed this protective effect on cell death. Together, our results extended the known functions of ADAR1 and RNA editing to the critical fine-tuning of the intracellular apoptotic signaling and also provided mechanistic explanation for ADAR1's roles in development and tumorigenesis.


Subject(s)
3' Untranslated Regions/genetics , Adenosine Deaminase/metabolism , Apoptosis/genetics , RNA Editing/genetics , RNA-Binding Proteins/metabolism , Adenosine Deaminase/genetics , Alu Elements/genetics , Base Sequence , Cytoprotection/genetics , Cytoskeletal Proteins/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Proto-Oncogene Proteins c-mdm2/genetics , RNA Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Transcription, Genetic , X-Linked Inhibitor of Apoptosis Protein/genetics
18.
Phys Chem Chem Phys ; 18(22): 15427-35, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27215493

ABSTRACT

Molecular dynamics simulations have been conducted to study the interaction between anatase TiO2(001), (100), and (101) surfaces and water at room temperature. The dynamic interfacial structure and properties of water on anatase TiO2 surfaces are obtained by analyzing the water density, the diffusion coefficient of water, the surface charge distribution, electric fields and the electrostatic potential distribution. The simulation results have revealed that a highly-ordered water layer structure can be formed near to the anatase TiO2 surface and have also given the Helmholtz layer width and potential drop at the water-TiO2 interface. By correlating the Helmholtz layer with the depletion layer, the depletion layer widths of three surfaces (001), (100), and (101) have been calculated as 474 Å, 237 Å and 99 Å, respectively. The resulting order of the photoelectrochemical activity of the anatase TiO2 surfaces is (001) > (100) > (101), which is consistent with the experimental results. This study may provide a useful correlation of the depletion layer with the Helmholtz layer based on simulations results for the prediction of the behavior and the control of photon-energy conversion devices.

19.
Cell Biosci ; 4: 44, 2014.
Article in English | MEDLINE | ID: mdl-25949793

ABSTRACT

Cells regulate gene expression at multiple levels leading to a balance between robustness and complexity within their proteome. One core molecular step contributing to this important balance during metazoan gene expression is RNA editing, such as the co-transcriptional recoding of RNA transcripts catalyzed by the adenosine deaminse acting on RNA (ADAR) family of enzymes. Understanding of the adenosine-to-inosine RNA editing process has been broadened considerably by the next generation sequencing (NGS) technology, which allows for in-depth demarcation of an RNA editome at nucleotide resolution. However, critical issues remain unresolved with regard to how RNA editing cooperates with other transcript-associated events to underpin regulated gene expression. Here we review the growing body of evidence, provided by recent NGS-based studies, that links RNA editing to other mechanisms of post-transcriptional RNA processing and gene expression regulation including alternative splicing, transcript stability and localization, and the biogenesis and function of microRNAs (miRNAs). We also discuss the possibility that systematic integration of NGS data may be employed to establish the rules of an "RNA editing code", which may give us new insights into the functional consequences of RNA editing.

20.
J Microbiol Immunol Infect ; 45(3): 243-7, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22206824

ABSTRACT

The H6 subtype of avian influenza virus (AIV) infection occurs frequently in wild and domestic birds. AIV antigen detection is preferred for controlling AIV as birds are infected before they produce antibodies. The purpose of this study was to develop an early diagnostic method for AIV detection. Six monoclonal antibodies (mAbs) developed from a field H6N1 AIV strain were tested for their ability to bind to viruses. The two that showed the greatest binding ability to AIVs were used for antigen detection. An antigen-capture enzyme-linked immunosorbent assay (ELISA) to detect H6 AIVs was developed using these mAbs. One mAb was coated onto an ELISA plate as the capture antibody. The other mAb was used as the detector antibody after labeling with horseradish peroxidase. The antigen-capture ELISA detected H6N1 AIVs but not H5 AIVs, human H1N1, H3N2 influenza or other viruses. This antigen-capture ELISA could be used to specifically detect H6N1 AIV.


Subject(s)
Antibodies, Monoclonal/chemistry , Antigens, Viral/analysis , Enzyme-Linked Immunosorbent Assay/methods , Influenza A virus/isolation & purification , Influenza in Birds/virology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antigens, Viral/immunology , Antigens, Viral/metabolism , Chickens , Influenza A Virus, H5N2 Subtype/isolation & purification , Influenza A virus/classification , Influenza in Birds/diagnosis , Limit of Detection , Trachea/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...