Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Int J Med Sci ; 21(7): 1194-1203, 2024.
Article in English | MEDLINE | ID: mdl-38818468

ABSTRACT

This study aims to elucidate the roles of Phosphoglycerate Mutase Family Member 5 (Pgam5) and Prohibitin 2 (Phb2) in the context of hyperglycemia-induced myocardial dysfunction, a critical aspect of diabetic cardiomyopathy. The research employed primary cardiomyocytes, which were then subjected to hyperglycemia treatment to mimic diabetic conditions. We used siRNA transfection to knock down Pgam5 and overexpressed Phb2 using adenovirus transfection to assess their individual and combined effects on cardiomyocyte health. Mitochondrial function was evaluated through measurements of mitochondrial membrane potential using the JC-1 probe, and levels of mitochondrial reactive oxygen species (ROS) were assessed. Additionally, the study involved qPCR analysis to quantify the transcriptional changes in genes related to mitochondrial fission and mitophagy. Our findings indicate that hyperglycemia significantly reduces cardiomyocyte viability and impairs mitochondrial function, as evidenced by decreased mitochondrial membrane potential and increased ROS levels. Pgam5 knockdown was observed to mitigate these adverse effects, preserving mitochondrial function and cardiomyocyte viability. On the molecular level, Pgam5 was found to regulate genes associated with mitochondrial fission (such as Drp1, Mff, and Fis1) and mitophagy (including Parkin, Bnip3, and Fundc1). Furthermore, overexpression of Phb2 countered the hyperglycemia-induced mitochondrial dysfunction and normalized the levels of key mitochondrial antioxidant enzymes. The combined data suggest a protective role for both Pgam5 knockdown and Phb2 overexpression against hyperglycemia-induced cellular and mitochondrial damage. The study elucidates the critical roles of Pgam5 and Phb2 in regulating mitochondrial dynamics in the setting of hyperglycemia-induced myocardial dysfunction. By modulating mitochondrial fission and mitophagy, Pgam5 and Phb2 emerge as key players in preserving mitochondrial integrity and cardiomyocyte health under diabetic conditions. These findings contribute significantly to our understanding of the molecular mechanisms underlying diabetic cardiomyopathy and suggest potential therapeutic targets for mitigating myocardial dysfunction in diabetes.


Subject(s)
Diabetic Cardiomyopathies , Hyperglycemia , Membrane Potential, Mitochondrial , Mitochondrial Dynamics , Myocytes, Cardiac , Prohibitins , Reactive Oxygen Species , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mitochondrial Dynamics/genetics , Hyperglycemia/metabolism , Hyperglycemia/complications , Hyperglycemia/genetics , Humans , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/etiology , Reactive Oxygen Species/metabolism , Animals , Mitophagy/genetics , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Mitochondria, Heart/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Rats
2.
ACS Appl Mater Interfaces ; 16(4): 5278-5285, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38247120

ABSTRACT

The electrochemical reaction kinetics, especially the oxygen reduction reaction (ORR) at the cathode, is crucial for the performance of a fuel cell. In this study, the electrochemical processes on a polycrystalline Pt electrode in the presence of protic ionic liquid (PIL) electrolyte diethylmethylammonium triflate [Dema][TfO] are investigated by means of cyclic voltammetry and electrochemical impedance spectroscopy. Since water is continually produced during fuel cell operation, the effect of the water content in the PIL has been intensively analyzed. In order to reveal the dependence of the interfacial reaction characteristics on the electrode potential, the impedance spectra were simulated by an equivalent circuit whose parameters can be related to both Faradaic and capacitive processes. Two interfacial resistances were identified, which differ by about 3 orders of magnitude. The larger one is a charge transfer resistance that can be associated with slow Faradaic processes like the ORR and platinum oxidation/oxide reduction. The smaller resistance is probably linked with fast processes that involve water molecules, such as hydrogen deposition and oxidation. The high- and midfrequency capacitive processes are attributed to "classical" double layer and pseudocapacitive behavior, similar to those identified under nitrogen atmosphere.

3.
Anal Chem ; 95(45): 16618-16624, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37902592

ABSTRACT

In situ monitoring of the electrolyte/electrode interfacial processes, such as the oxygen reduction reaction (ORR), is crucial for the design of electrolytes for fuel cells. In this study, we investigate the electrochemical behavior of platinum electrodes in protic ionic liquids (PILs) by means of in situ Fourier-transform infrared spectroscopy coupled with cyclic voltammetry. The result provides direct evidence of the change of water at the Pt electrode surface due to Pt oxide formation and reduction. A decrease in the interfacial water was observed in the spectra upon the formation of the Pt oxide. Conversely, the local water concentration at the electrode surface increases if the Pt oxide is reduced and the ORR takes place. At the same time, more cations replace anions on the electrode. The ORR kinetics in the [TFSI]-based PILs is slower than in the [TfO]-based ones, which could result from a blockage of catalytic sites by the adsorbed [TFSI] anions. It suggests that reducing the anion adsorption on the platinum surface could provide an opportunity to enhance the ORR activity.

4.
J Craniomaxillofac Surg ; 51(12): 732-739, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37758600

ABSTRACT

The present study aimed to investigate the association between intraoperative body temperature and prolonged length of stay (PLOS) after free flap reconstruction. A total of 753 patients who underwent head and neck surgery with free flap reconstruction were collected and randomly assigned into primary and validation cohorts. In the primary cohort, univariable and multivariable analyses were conducted to evaluate associations between intraoperative time-weighted (TW) temperature (TW average [TWA] temperature, TW hypothermia and TW hyperthermia) and PLOS. Nomograms were developed with and without intraoperative TW temperature, and validated in the validation cohort. Severe intraoperative TW hypothermia (OR = 1.004; 95% CI: 1.000, 1.007; p = 0.032) was identified as an independent risk factor for PLOS. Intraoperative TWA temperature and TW hypothermia showed linear related predictive effect for PLOS. The nomogram incorporating intraoperative TW temperature showed higher C-index (0.652, 95% CI: 0.591, 0.713) and improved net reclassification improvement for non-event (0.277, 95% CI: 0.118, 0.435; p < 0.001). Lower TWA temperature with mild TW hypothermia had a preventive effect on PLOS with a linear association, which may provide a modified range for intraoperative temperature management. The proposed nomogram incorporating intraoperative TW temperature could be used to develop personalized preventive strategies for PLOS after free flap reconstruction. IRB NUMBER: SYSEC-KY-KS-2022-037. CLINICAL TRIAL REGISTRATION NUMBER: Not applicable.


Subject(s)
Free Tissue Flaps , Head and Neck Neoplasms , Hypothermia , Humans , Hypothermia/complications , Temperature , Length of Stay , Head and Neck Neoplasms/surgery , Head and Neck Neoplasms/complications , Retrospective Studies , Postoperative Complications/prevention & control , Postoperative Complications/etiology
5.
Heliyon ; 9(8): e19006, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37600405

ABSTRACT

Background: Intraoperative hypothermia is a common but severe condition that is defined as a core body temperature below 36 °C. Accidental hypothermia can produce coagulopathy, immunosuppression and peripheral hypoperfusion that can ultimately lead to life-threatening ventricular arrhythmias and vital organ injury, and it is significantly associated with perioperative complications and mortality. Case description: We report the case of an 82-year-old man who presented with persistent ventricular tachycardia intraoperatively due to accidental hypothermia. The patient was diagnosed with benign prostatic hypertrophy and scheduled for transurethral resection of the prostate. Laboratory tests showed moderate anemia, and echocardiography indicated mild tricuspid and mitral regurgitation. The patient received general anesthesia with endotracheal intubation. Four hours after the start of surgery, the patient developed sudden ventricular tachycardia with severe hypotension. Arterial blood gas sampling indicated that there was no disturbance of electrolytes, acid-base balance or excessive bleeding. The rectal temperature was measured immediately, and the core temperature was 32 °C. The patient received antiarrhythmic therapy and rewarming measures. No additional ventricular arrhythmias appeared after the core temperature rose to 35 °C and the blood pressure returned to normal. The patient was transferred to the intensive care unit after surgery for further observation and was moved to the general ward the next day. He was discharged 4 days later without significant organ damage. Conclusions: Intraoperative hypothermia may increase ventricular arrhythmia risk, especially in elderly patients. Surgeons and anesthesiologists should pay more attention to preventing and reversing accidental hypothermia, necessitating aggressive efforts to maintain normothermia during surgery.

6.
Nanomaterials (Basel) ; 13(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37570521

ABSTRACT

In the present study, Fe1.1(CrxMn1-x)1.9O4 nanoparticles (0 ≤ x ≤ 0.5) were successfully synthesized by a combustion method, and the influence of Cr substitution on the structural and magnetic properties of the obtained nanoparticles was studied by various methods. The structural analysis revealed that the sample with x = 0 has a tetragonal structure, while all Cr-doped samples crystallize into a cubic structure. Additionally, the results of TEM show that doping with chromium leads to an increase in particle size. The magnetic hysteresis loops demonstrate the behavior typical for soft magnetic materials with low coercivity and remanence magnetization. The magnetic measurements revealed that the saturation magnetization of the obtained nanoparticles demonstrates a decreasing trend with increasing Cr content. The influence of chromium doping on the observation change in saturation magnetization is discussed. Based on the results of temperature-dependent magnetization measurements, it was found that the temperature of a magnetic transition in synthesized nanoparticles depends on Cr content.

7.
Nanomaterials (Basel) ; 13(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37049366

ABSTRACT

Fe1.1Mn1.9O4 nanoparticles were successfully synthesized using a combustion method. The influence of the heating temperature on the evolution of the structural and magnetic properties has been studied using various methods. The structural analysis results revealed that as-synthesized nanoparticles have a tetragonal structure with an average size of ~24 nm. The magnetic measurements of the sample showed its ferrimagnetic nature at room temperature with hysteresis at low fields. Temperature-dependent magnetization measurements allowed for the conclusion that the Curie temperature for Fe1.1Mn1.9O4 nanoparticles was ~465 °C. After high-temperature magnetic measurements, during which the samples were heated to various maximum heating temperatures (Tmax.heat.) in the range from 500 to 900 °C, it was found that the structure of the samples after cooling to room temperature depended on the heating temperature. Herewith, when the heating temperature was 600 < Tmax.heat. < 700 °C, an irreversible structural phase transition occurred, and the cooled samples retained a high-temperature cubic structure. The results of the magnetic analysis showed that the samples, following high-temperature magnetic measurements, demonstrated ferrimagnetic behavior.

8.
Front Cardiovasc Med ; 10: 1091303, 2023.
Article in English | MEDLINE | ID: mdl-36910530

ABSTRACT

Large mural thrombi in the relatively normal ascending aorta are extremely uncommon conditions that may lead to major adverse cardiovascular events due to new embolism. Because of their changeable variations, the management of these unstable thrombi is challenging and controversial. The size, morphology, location, embolic involvement, and patients' conditions are all crucial for therapeutic decision-making. Treatment options include anticoagulation, thrombolysis, surgical thrombectomy, and endovascular stenting. Therefore, surgical strategies should be highly individualized. Herein, we present a rare case of a huge thrombus from the ascending aorta to the arch in a 43-year-old man. Considering the high risks of catastrophic embolic events, surgical removal of the aortic mass, thromboendarterectomy, and reconstruction of the arterial wall were performed with a satisfactory outcome. This report illustrates our experience of surgical strategies and perioperative treatments for this challenging case, and contemporary surgical management for mural thrombi in the ascending aorta was also thoroughly discussed.

9.
Nanoscale Res Lett ; 17(1): 70, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35925519

ABSTRACT

Bi-doped yttrium iron garnet nanopowders were successfully synthesized by a combustion method at different synthesis conditions, and the evolution of their structural, magnetic, and magneto-optical properties has been studied by various methods. X-ray diffraction analysis revealed that crystallite size increases with increase as in annealing time (tA) well as in annealing temperature (TA) and varied from 15.2 nm (TA = 650 °C, tA = 0.5 h) to 44.5 nm (TA = 800 °C, tA = 12 h). The magnetic hysteresis loops exhibit behavior characteristic of soft magnetic materials; herewith, the saturation magnetization demonstrates a growing trend with increasing crystallite size (D). The behavior of the coercivity indicates that, at room temperature, the transition between single-domain and multidomain states occurs at D = 35.3 nm. It was found that the size effect in the MCD spectra is clearly observed for the samples with crystallite sizes less than 42.2 nm for an intersublattice charge-transfer transition and a crystal-field tetrahedral transition. The influence of cation redistribution on the observed changes has been discussed.

10.
Nanomaterials (Basel) ; 12(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35159723

ABSTRACT

This work is devoted to the study of magnetic Fe3O4 nanoparticles doubly coated with carbon. First, Fe3O4@C nanoparticles were synthesized by thermal decomposition. Then these synthesized nanoparticles, 20-30 nm in size were processed in a solution of glucose at 200 °C during 12 h, which led to an unexpected phenomenon-the nanoparticles self-assembled into large conglomerates of a regular shape of about 300 nm in size. The morphology and features of the magnetic properties of the obtained hybrid nanoparticles were characterized by transmission electron microscopy, differential thermo-gravimetric analysis, vibrating sample magnetometer, magnetic circular dichroism and Mössbauer spectroscopy. It was shown that the magnetic core of Fe3O4@C nanoparticles was nano-crystalline, corresponding to the Fe3O4 phase. The Fe3O4@C@C nanoparticles presumably contain Fe3O4 phase (80%) with admixture of maghemite (20%), the thickness of the carbon shell in the first case was of about 2-4 nm. The formation of very large nanoparticle conglomerates with a linear size up to 300 nm and of the same regular shape is a remarkable peculiarity of the Fe3O4@C@C nanoparticles. Adsorption of organic dyes from water by the studied nanoparticles was also studied. The best candidates for the removal of dyes were Fe3O4@C@C nanoparticles. The kinetic data showed that the adsorption processes were associated with the pseudo-second order mechanism for cationic dye methylene blue (MB) and anionic dye Congo red (CR). The equilibrium data were more consistent with the Langmuir isotherm and were perfectly described by the Langmuir-Freundlich model.

11.
J Clin Ultrasound ; 50(2): 202-208, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34965313

ABSTRACT

AIM: To investigate the ovarian function and pregnancy outcome of patients with uterine fibroids and the influencing factors after high intensity focused ultrasound (HIFU) ablation treatment. METHODS: A total of 80 patients were recruited. All patients were divided into the pregnancy group (64 cases) and the non-pregnancy group (16 cases). The pregnancy group was categorized into the good pregnancy outcome (GOP) group (46 cases) and adverse pregnancy outcome (APO) group (18 cases). The general data of all study subjects were collected. The changes of anti-Müllerian hormone (AMH), follicle-stimulating hormone (FSH), inhibin B (INHB), and antral follicle count (AFC) before HIFU and 3, 6, and 12 months after HIFU were compared. The related factors affecting pregnancy and pregnancy outcomes were analyzed. RESULTS: There were no significant differences in AMH, FSH, INHB levels, and AFC at 6 and 12 months after HIFU compared with those before HIFU in pregnancy and non-pregnancy groups (p > 0.05). This study demonstrated that patients with prior history of pregnancy, younger age, lower body mass index (BMI), and smaller fibroids volume had a higher pregnancy rate (p < 0.05). Besides, younger age and smaller fibroids volume were associated with better pregnancy outcomes (p < 0.05). CONCLUSIONS: HIFU in the treatment of uterine fibroids has little effect on ovarian function and does not increase the risk of infertility and adverse pregnancy. The prior history of pregnancy, age, BMI, and fibroids volume are essential factors affecting the postoperative pregnancy.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Leiomyoma , Uterine Neoplasms , Female , Humans , Leiomyoma/diagnostic imaging , Leiomyoma/therapy , Pregnancy , Pregnancy Outcome , Treatment Outcome , Uterine Neoplasms/diagnostic imaging , Uterine Neoplasms/therapy
12.
Materials (Basel) ; 16(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36614361

ABSTRACT

The morphology, structure, and magnetic properties of Fe3O4 and Fe3O4@C nanoparticles, as well their effectiveness for organic dye adsorption and targeted destruction of carcinoma cells, were studied. The nanoparticles exhibited a high magnetic saturation value (79.4 and 63.8 emu/g, correspondingly) to facilitate magnetic separation. It has been shown that surface properties play a key role in the adsorption process. Both types of organic dyes-cationic (Rhodomine C) and anionic (Congo Red and Eosine)-were well adsorbed by the Fe3O4 nanoparticles' surface, and the adsorption process was described by the polymolecular adsorption model with a maximum adsorption capacity of 58, 22, and 14 mg/g for Congo Red, Eosine, and Rhodomine C, correspondingly. In this case, the kinetic data were described well by the pseudo-first-order model. Carbon-coated particles selectively adsorbed only cationic dyes, and the adsorption process for Methylene Blue was described by the Freundlich model, with a maximum adsorption capacity of 14 mg/g. For the case of Rhodomine C, the adsorption isotherm has a polymolecular character with a maximum adsorption capacity of 34 mg/g. To realize the targeted destruction of the carcinoma cells, the Fe3O4@C nanoparticles were functionalized with aptamers, and an experiment on the Ehrlich ascetic carcinoma cells' destruction was carried out successively using a low-frequency alternating magnetic field. The number of cells destroyed as a result of their interaction with Fe3O4@C nanoparticles in an alternating magnetic field was 27%, compared with the number of naturally dead control cells of 6%.

13.
Int J Mol Sci ; 22(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34884462

ABSTRACT

Protic ionic liquids are promising electrolytes for fuel cell applications. They would allow for an increase in operation temperatures to more than 100 °C, facilitating water and heat management and, thus, increasing overall efficiency. As ionic liquids consist of bulky charged molecules, the structure of the electric double layer significantly differs from that of aqueous electrolytes. In order to elucidate the nanoscale structure of the electrolyte-electrode interface, we employ atomic force spectroscopy, in conjunction with theoretical modeling using molecular dynamics. Investigations of the low-acidic protic ionic liquid diethylmethylammonium triflate, in contact with a platinum (100) single crystal, reveal a layered structure consisting of alternating anion and cation layers at the interface, as already described for aprotic ionic liquids. The structured double layer depends on the applied electrode potential and extends several nanometers into the liquid, whereby the stiffness decreases with increasing distance from the interface. The presence of water distorts the layering, which, in turn, significantly changes the system's electrochemical performance. Our results indicate that for low-acidic ionic liquids, a careful adjustment of the water content is needed in order to enhance the proton transport to and from the catalytic electrode.


Subject(s)
Electrolytes/chemistry , Ionic Liquids/chemistry , Electric Conductivity , Electrodes , Methylamines/chemistry , Molecular Conformation , Platinum/chemistry
14.
Nanoscale Res Lett ; 16(1): 162, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34735640

ABSTRACT

Mixed-metal oxide nanoparticles have attracted great scientific interest since they find applications in many fields. However, the synthesis of size-controlled and composition-tuned mixed-metal oxide nanoparticles is a great challenge that complicates their study for practical application. In this study, Co-doped FeMn2O4 nanoparticles were synthesized by the solvothermal method in which the crystallization was carried out under autogenous pressure at temperatures of 190 °C for 24 h. The influence of Co doping on the evolution of the structural and magnetic properties was investigated by various methods. It was found from XRD data that crystallite size decreases from 9.1 to 4.4 nm with the increase in Co content, which is in good agreement with the results of TEM. Based on the results of magnetic measurements, it was found that the saturation magnetization first increases with an increase in the cobalt content and reaches its maximum value at x = 0.4, and a further increase in x leads to a decrease in the saturation magnetization. The influence of cation redistribution on the observed changes has been discussed.

15.
Nanomaterials (Basel) ; 11(9)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34578686

ABSTRACT

Fe3O4@SiO2 core-shell nanoparticles (NPs) were synthesized with the co-precipitation method and functionalized with NH2 amino-groups. The nanoparticles were characterized by X-ray, FT-IR spectroscopy, transmission electron microscopy, selected area electron diffraction, and vibrating sample magnetometry. The magnetic core of all the nanoparticles was shown to be nanocrystalline with the crystal parameters corresponding only to the Fe3O4 phase covered with a homogeneous amorphous silica (SiO2) shell of about 6 nm in thickness. The FT-IR spectra confirmed the appearance of chemical bonds at amino functionalization. The magnetic measurements revealed unusually high saturation magnetization of the initial Fe3O4 nanoparticles, which was presumably associated with the deviations in the Fe ion distribution between the tetrahedral and octahedral positions in the nanocrystals as compared to the bulk stoichiometric magnetite. The fluorescent spectrum of eosin Y-doped NPs dispersed in water solution was obtained and a red shift and line broadening (in comparison with the dye molecules being free in water) were revealed and explained. Most attention was paid to the adsorption properties of the nanoparticles with respect to three dyes: methylene blue, Congo red, and eosin Y. The kinetic data showed that the adsorption processes were associated with the pseudo-second order mechanism for all three dyes. The equilibrium data were more compatible with the Langmuir isotherm and the maximum adsorption capacity was reached for Congo red.

16.
Nanomaterials (Basel) ; 11(6)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070733

ABSTRACT

Pyrrhotite nanoparticles with 5C and 3C superstructures were synthesized via a simple one-step thermal decomposition method in which hexadecylamine was used as a solvent at various reaction temperatures (TR). Structural analysis showed that at TR = 360 °C, almost uniform in size and shape Fe7S8 nanoparticles with 3C superstructure are formed, and an increase in the reaction temperature leads to the formation of Fe9S10 nanoparticles (5C superstructure), herewith a significant increase in the size of nanoparticles is observed. High-temperature magnetic measurements in 5 repeated heating-cooling cycles revealed that after the first heating branch in the Fe9S10 samples, the λ-Peak transition disappears, and the magnetization has a Weiss-type behavior characteristic of the Fe7S8 sample. The change in the behavior of magnetization can be explained by the redistribution of iron vacancies, which changes the initial phase composition of nanoparticles.

17.
Front Oncol ; 11: 540904, 2021.
Article in English | MEDLINE | ID: mdl-33816216

ABSTRACT

IgG4-related autoimmune cholangitis (IgG4-AIC) is often difficult to distinguish from cholangiocarcinoma (CCA). This study aimed to determine a practical clinical strategy for distinguishing between IgG4-AIC and CCA to avoid unnecessary surgical resection. We retrospectively collected and compared the clinicopathological data between IgG4-AIC and CCA patients, including the clinical, serological, and radiological characteristics, to follow up on these patients to investigate the prognosis. Among the 377 patients who received surgical resection for suspecting CCA at the Sun Yat-Sen Memorial Hospital between June 2004 and June 2014, 14 patients were diagnosed as IgG4-AIC through histochemistry after surgery. Immunohistochemistry revealed that IgG4 was up-regulated in the plasma cells of IgG4-AIC tissues in 13 out of 14 patients. The serum CA19-9 level was significantly lower than in the CCA group. Patients with IgG4-AIC can only see slight or no enhancement under the contrast enhancement CT scan, while there are no signs of ring-like or delayed enhancement that is unique to CCA. Thirteen patients were followed up, and the time was 12 to 92 months. Three of them were regularly treated with prednisone after surgery, and original symptoms disappeared. Our study demonstrated that the combination of imaging with serum CA19-9 could improve the preoperative diagnostic value and reduce the rate of unnecessary resection.

18.
Exp Ther Med ; 19(4): 2957-2962, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32256781

ABSTRACT

The aim of the present study was to evaluate the microcirculation perfusion in patients with acute radiation-induced liver damage (RILD) and explore the feasibility of non-invasive evaluation of RILD using quantitative analysis of contrast-enhanced ultrasound (CEUS). Patients who successfully underwent three-dimensional conformal intensity-modulated radiotherapy for abdominal tumors were selected. CEUS was performed on the liver prior to and 2, 3 and 4 weeks after exposure, and the time-intensity curve (TIC) was obtained by quantitative analysis of CEUS. The time to peak (TTP), gradient (Grad) and area under the curve (AUC) were analyzed offline. The Grad of the CEUS TIC was decreased and TTP increased with the prolongation of the irradiation duration, with statistically significant differences between the values in the 2-, 3- and 4-week groups vs. those prior to exposure (P<0.05), as well as among the values of the 2-, 3- and 4-week groups (P<0.05). Following irradiation, the AUC decreased gradually in the 2- and 3-week groups and increased in the 4-week group, with statistically significant differences compared with the AUC prior to irradiation (P<0.05). The quantitative analysis parameters of CEUS may be important reference parameters for the early diagnosis of acute RILD.

19.
Article in English | MEDLINE | ID: mdl-31936871

ABSTRACT

Catastrophic natural disasters cause devastating damage and leave a huge number of homeless people. Waiting for resettlement in a post-disaster environment brings human suffering, which is defined by waiting cost in this paper. Taking into account waiting cost and fairness consideration simultaneously, a mixed integer linear programming model is constructed for the multiperiod location-allocation process. Two fairness indicators are incorporated to guarantee both the whole-process equity and the periodic equity. The model is implemented in the General Algebraic Modeling System (GAMS) and solved by the CPLEX solver. An illustrative example is provided to explain the model characteristics. Furthermore, a case study of the Yushu earthquake is conducted to demonstrate the applicability of the model to practical problems.


Subject(s)
Earthquakes/statistics & numerical data , Emergency Shelter , Models, Statistical , Natural Disasters , Ill-Housed Persons , Humans
20.
Exp Ther Med ; 10(5): 1807-1811, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26640553

ABSTRACT

The aim of the present study was to examine and assess contrast-enhanced ultrasound in the early diagnosis of acute radiation-induced liver injury in a rat model. Sixty female rats were used, with 50 rats being utilized to produce an animal model of liver injury with a single dose of stereotactic X-ray irradiation of 20 Gy. Ten rats from the injury group and 2 rats from the control group were randomly selected on days 3, 7, 14, 21 and 28, and examined by contrast-enhanced ultrasound and histopathology of liver specimens. The rats were divided into four groups: the normal control group, mild, moderate, and severe radioactive liver injury groups based on the histopathological examination results. Hepatic artery arriving time (HAAT) and hepatic vein arriving time (HVAT) were recorded, and hepatic artery to vein transit time (HA-HVTT) was calculated. The time-intensity curve of liver parenchyma, the time to peak (TTP) and peak intensity (PI) were also obtained. Significant differences were observed between liver injury and control groups for PI and HA-HVTT (P<0.05). PI and HA-HVTT were shorter in the severe liver injury group compared to the mild and moderate liver injury groups (P<0.05). Compared to the control group, higher TTP was recorded in all the liver injury groups (P<0.05), and the highest TTP level was observed in the severe liver injury group compared to the mild or moderate group (P<0.05). However, no significant difference was observed between the mild and moderate groups for PI, HA-HVTT and TTP. In conclusion, the results showed that contrast-enhanced ultrasonography is useful for an earlier diagnosis in a rat model of acute radiation-induced liver injury.

SELECTION OF CITATIONS
SEARCH DETAIL
...