Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
J Hazard Mater ; 479: 135662, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39216239

ABSTRACT

Accurately ascertaining spatiotemporal distribution of pollution plume is critical for evaluating the effectiveness of remediation technologies and environmental risks associated with contaminated sites. This study concentrated on a typical Cr(VI) contaminated smelter being currently remediated using pump-and-treat (PAT) technology. Long-term on-site monitoring data revealed that two highly polluted regions with Cr(VI) concentrations of 162.9 mg/L and 234.5 mg/L existed within the contaminated site, corresponding to previous chromium slag yard and sewage treatment plant, respectively. The PAT technology showed significant removal performance in these highly polluted areas (>160 mg/L) after six months of pumping, ultimately achieving complete removal of the pollutants in these high-pollution areas. Numerical simulation results showed that although the current remediation scheme significantly reduced the Cr(VI) pollution degree, it did not effectively prevent the incursion of the pollution plume into the downstream residential area after 20 years. Additionally, an improved measure involving supplementary pumping wells was proposed, and its remediation effects were quantitatively evaluated. Results indicated that the environmental pollution risk of groundwater downstream could be effectively mitigated by adding pumping wells, resulting in a reduction of the pollution area by 20 % in the case of adding an internal well and 41 % with the addition of external wells after 20 years. The findings obtained in this study will provide an important reference and theoretical guidance for the reliability analysis and design improvement of the PAT remediation project.

3.
Waste Manag ; 185: 43-54, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38820783

ABSTRACT

Plastics within municipal solid waste (MSW) are non-degradable. As MSW continues to degrade, the relative content of plastics rises, and particle gradation may also change. Moreover, throughout the landfilling process, MSW is subjected to various stress conditions, potentially influencing its mechanical properties. This study explored the effects of varying plastic contents, different particle gradations, and distinct stress paths on the mechanical properties of MSW, and consolidated drained triaxial tests of 42 groups of reconstituted MSW specimens were conducted. The results showed that there was an optimal plastic content of 6-9 % for MSW, where the shear strength of MSW was higher than that of MSW with other plastic contents. When the stress path changed from TC45 to TC72, the optimal plastic content of MSW changed from 6 % to 9 %. As the plastic content increased, both the cohesion and internal friction angle of the MSW initially increased, then subsequently decreased. The impact of plastic content on cohesion was more pronounced than on the internal friction angle, especially at larger strains. Under various stress paths, MSW with distinct particle size distributions demonstrated diverse stress-strain behaviors. Traditional criteria for evaluating well-graded conditions in soils are not suitable for MSW. The effect of gradation on the cohesion of MSW is essentially due to the predominant role of fiber content; the relationship between gradation and the internal friction angle in MSW is complex and correlates closely with the content of both coarse and fine particles, as well as fibers. This study serves as an essential reference for predicting deformations in landfills and analyzing the stability of landfill slopes.


Subject(s)
Plastics , Refuse Disposal , Solid Waste , Solid Waste/analysis , Refuse Disposal/methods , Stress, Mechanical , Particle Size , Shear Strength , Waste Disposal Facilities
4.
Chemosphere ; 340: 139897, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37604342

ABSTRACT

Soil and groundwater Cr(VI) pollution resulting from improper disposal and accidental spills is a critical problem worldwide. In this study, a comprehensive study was conducted to assess the hydrogeological conditions of a contaminated site, obtain spatiotemporal distribution and trend forecasts of pollutant Cr(VI), and determine the feasibility of applying clayey engineered barriers for pollution control. The results showed that the hydraulic conductivity (K) of the clayey barrier (1.56E-5 m/d) is several orders of magnitude lower than that of the stratum beneath the contaminated site, with K values ranging from 0.0014 to 4.76 m/d. Cr(VI) exhibits high mobility and a much higher concentration in the vadose zone, with maximum values of 6100 mg/kg in topsoil and 2090 mg/L in the perched aquifer. The simulation results indicated that the groundwater in the vicinity of the contaminated site, as well as downstream of the Lianshui River, is seriously threatened by Cr(VI). Notably, the pollution plume could occur downstream of the Lianshui River after 8 years. The retention efficiency of clayey engineered barriers will decrease over time, at 61.6% after 8 years and 33% after 20 years. This work contributes to an in-depth understanding of Cr(VI) migration at contaminated sites.


Subject(s)
Environmental Pollutants , Environmental Pollution , China , Chromium , Clay
5.
Environ Sci Pollut Res Int ; 30(17): 50162-50173, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36790709

ABSTRACT

Soil-bentonite (S-B) materials are promising backfill materials for use as engineered barriers in heavy metal-contaminated sites. The effects of contaminant exposure on the retention performance of the S-B barrier remain unrevealed. In this study, based on the pollution status of an abandoned ferroalloy factory located in southern China, the retention performance of the S-B mixture toward Cr(VI) and Zn(II) was studied through adsorption and diffusion experiments sequentially; the separate effect of ionic strength (binary solution) and the combined effect of ionic strength and associated heavy metal ion (ternary solution) were discussed. In NaCl-Cr(VI)/Zn(II) binary solutions, the adsorption of Zn(II) onto the S-B mixture is larger than that of Cr(VI). Kd, Qmax, and ɛacc (accessible porosity) of Cr(VI) increase through increasing ionic strength, while Zn(II) shows the opposite trend; De (effective diffusion coefficient) values for both Cr(VI) and Zn(II) increased with increasing ionic strength and follow a sequence of Cr(VI) > Zn(II), indicating a better retention performance of the S-B mixture to Zn(II). For a given ionic strength, the adsorption of Zn(II) was larger than that of Cr(VI), which can be attributed to the retention specificity of the S-B mixture to anion and cation. In Cr(VI)-Zn(II)-NaCl ternary solutions, the adsorptions of Cr(VI) and Zn(II) are enhanced in varying degrees when compared with their binary solution, which probably could be attributed to the ion bridge role of Cr(VI)/Zn(II) to connect each other that relatively increased the adsorption capacity of S-B material. This work will contribute to an in-depth understanding of the retention performance of the S-B mixture in complicated chemical environments and facilitate the selection of future remediation strategies.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Bentonite , Soil , Sodium Chloride , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Chromium/analysis , Anions , Osmolar Concentration , Adsorption , Hydrogen-Ion Concentration , Kinetics
6.
Environ Sci Pollut Res Int ; 30(13): 35872-35890, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36538229

ABSTRACT

Gas breakthrough pressure is a significant parameter for the gas exploration and safety evaluation of engineering barrier systems in the carbon dioxide storage, remediation of contaminated sites, and deep geological repository for disposal of high-level nuclear waste, etc. Test for determining gas breakthrough pressure is very difficult and time-consuming, due to the low/ultra-low conductivity of the specimen. It is also difficult to get a comprehensive and high-precision model based on limited results obtained through individual experiments, as the measurements of gas breakthrough pressure were influenced by many factors. In this study, a collected database was built that covered a lot of former test data, and then, two models were developed by the random forest (RF) algorithm and multiexpression programming (MEP) method. The MEP model constructed with explicit expressions for the gas breakthrough pressure overcame the drawbacks of common "black box" models. Meanwhile, five significant indicators were selected from ten common features using the permutation importance algorithm. The RF model was interpreted by the Shapley value and the PDP/ICE plots, while the MEP model was analyzed through the proposed explicit expression, showing strong consistence with that in former studies. Finally, robustness analysis was conducted, and stability of the proposed two models was verified.


Subject(s)
Algorithms , Machine Learning , Porosity , Carbon Dioxide , Permeability
7.
Environ Sci Pollut Res Int ; 27(20): 25057-25068, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32347488

ABSTRACT

In the Chinese high-level radioactive waste geological disposal program, Gaomiaozi (GMZ) bentonite has been selected as the potential buffer/backfill material. After the closure of the repository, the Ca-OH-type alkaline solution (evolved cement water) released by cement degradation may last for more than 100,000 years. The bentonite will undergo the corrosion of evolved cement water (ECW) for a long period. This work focuses on the sorption property of GMZ bentonite altered by ECW. Firstly, the corrosion experiments on compacted GMZ specimens with the dry density of 1.70 Mg/m3 were carried out under constant volume conditions at two temperatures. Then, the sorption of europium (Eu (III)) onto the corroded GMZ bentonite was studied by batch experiments. The results of batch sorption tests indicate that the altered GMZ bentonite keeps an effective removal property with the uptake of Eu (III) more than 99%. The effect of high-temperature conditions of the repository on the sorption property of bentonite is not significant. The results also suggest that the evolved cement water presents no detrimental effect on the long-term adsorption performance of bentonite even under higher temperature conditions.


Subject(s)
Bentonite , Radioactive Waste/analysis , Adsorption , Europium , Temperature , Water
8.
Environ Pollut ; 252(Pt B): 1010-1018, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31252097

ABSTRACT

Heavy metal pollution is a serious environmental problem globally, particularly in mines and tailings ponds. In this study, based on laboratory and field tests, the migration of heavy metal contaminants in a tailings pond and the retention behavior of a compacted bentonite engineered barrier system on the heavy metal contaminants were analyzed by a numerical simulation. The results demonstrate that the hydraulic conductivity of compacted bentonite is lower than that of the tailings from the laboratory tests. The hydraulic conductivity of the tailings sand decreased with an increase in the dry density and increased with an increase in the concentration of the chemical solution, which could be attributed to the large amounts of fine-grained soil contained in the tailings, according to the grain size distribution test. The hydraulic conductivity of the tailings from the engineering geological survey was between 2.0 × 10-6 and 9.0 × 10-5 m/s, and followed the order: tail coarse sand > tail silty sand > tail medium sand > tail fine silt. The numerical simulation of the seepage could satisfactorily describe the actual working condition of the tailings dam. With the groundwater seepage, the migration range of the heavy metal contaminant in the researched tailings pond reached a maximum of 45 m for 5 years. The retention efficiencies of the 0.2 m engineered barrier against the heavy metal contaminant for 15 and 30 years were 45.4% and 57.2%, respectively. Moreover, the retention efficiency would exceed 87% when the engineered barrier thickness is increased to 0.5 m. The results of model validation show that the calculated results are in good agreement with the measured ones. These findings can provide effective ideas for the prevention and control of environmental pollution in mines and tailings ponds.


Subject(s)
Bentonite/chemistry , Metals, Heavy/analysis , Mining , Ponds/chemistry , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Hydrodynamics , Models, Theoretical , Soil/chemistry , Soil Pollutants/analysis
9.
Fish Shellfish Immunol ; 50: 109-16, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26806164

ABSTRACT

Apoptosis signal-regulating kinase 1 (ASK1), a mitogen-activated protein kinase kinase kinase, is crucial in various cellular responses. In the present study, we identified and characterized an ASK1 homolog from Litopenaeus vannamei (LvASK1). The full-length cDNA of LvASK1 was 5400 bp long, with an open reading frame encoding a putative 1420 amino acid protein. LvASK1 was highly expressed in muscle, hemocyte, eyestalk and heart. Real-time RT-PCR analysis showed that the expression of the LvASK1 was upregulated during the white spot syndrome virus (WSSV) challenge. The knocked-down expression of LvASK1 by RNA interference significantly reduced the apoptotic ratio of the hemocytes collected from WSSV-infected L. vannamei. Furthermore, the down-regulation of LvASK1 also decreased the cumulative mortality of WSSV-infected L. vannamei. These results suggested that down-regulation of LvASK1 decreased the apoptotic rate of hemocytes in WSSV-infected shrimp, and that it could contribute to the reduction of cumulative mortality in WSSV-infected L. vannamei.


Subject(s)
Apoptosis , Arthropod Proteins/genetics , Gene Expression Regulation , MAP Kinase Kinase Kinase 5/genetics , Penaeidae/physiology , White spot syndrome virus 1/physiology , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/metabolism , Base Sequence , Hemocytes/physiology , MAP Kinase Kinase Kinase 5/chemistry , MAP Kinase Kinase Kinase 5/metabolism , Penaeidae/genetics , Penaeidae/immunology , Penaeidae/virology , Phylogeny , Sequence Alignment/veterinary
10.
Fish Shellfish Immunol ; 54: 153-63, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26497095

ABSTRACT

In this study, Litopenaeus vannamei was injected with double-stranded RNA (dsRNA) against L. vannamei immunoglobulin heavy chain binding protein (LvBip) to activating UPR in the hemocytes, shirmps injected dsRNA against enhanced green fluorescence protein (eGFP) as control group. And genes expression in hemocytes of then were analyzed using Illumina Hiseq 2500 (PE100). By comparing the analyzed results, 1418 unigenes were significantly upregulated, and 596 unigenes were significantly down-regulated upon UPR. Analysis of the differentially expressed genes against known databases indicated that the distribution of gene pathways between the upregulated and down-regulated genes were substantially different. A total of 208 genes of UPR system were obtained, and 69 of them were differentially expressed between the two groups. Results also showed that L. vannamei UPR was involved in various metabolic processes, such as glycometabolism, lipid metabolism, amino acid metabolism, and nucleic acid metabolism. In addition, UPR was emgaged in immune-assicoated signaling pathways, such as NF-κB signaling pathway, NOD-like receptor signaling pathway, Hippo signaling pathway, p38 MAPK signaling pathway and Wnt signaling pathway in L. vannamei. These results improved our current understanding of the L. vannamei UPR, and highlighted its importance in cell homeostasis upon environmental stress.


Subject(s)
Gene Expression Regulation , Penaeidae/physiology , Unfolded Protein Response , Animals , Arthropod Proteins , Gene Expression Profiling , Hemocytes/metabolism , Penaeidae/genetics , Penaeidae/immunology , Penaeidae/microbiology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL