Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 273
Filter
1.
J Am Chem Soc ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141924

ABSTRACT

Anisotropic nanoparticles such as worm-like micelles have aroused much attention due to their promising applications from templates to drug delivery. The fabrication of worm-like micelles with tunable structural stability and control over their diameter and length is of great importance but still challenging. Herein, we report a kinetically controlled ring-opening metathesis polymerization-induced self-assembly (ROMPISA) for the robust preparation of kinetically trapped worm-like micelles with tunable diameter/length at enlarged experimental windows by the rational manipulation of kinetic factors, including solvent property, temperature, and π-π stacking effects. The resultant worm structures were thermodynamically metastable and capable of excellent structural stability at room temperature due to the kinetic trapping effect. At elevated temperatures, these thermodynamically metastable worms could undergo morphology evolution into vesicular structures in a controlled manner. Moreover, the structural stability of worms could also be significantly enhanced by in situ cross-linking. Overall, this kinetically controlled ROMPISA opens a new avenue for PISA chemistry that is expected to prepare "smart" polymer materials by manipulating kinetic factors.

2.
FASEB J ; 38(16): e23884, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39135512

ABSTRACT

The inhibition of the autophagolysosomal pathway mediated by transcription factor EB (TFEB) inactivation in proximal tubular epithelial cells (TECs) is a key mechanism of TEC injury in diabetic kidney disease (DKD). Acetylation is a novel mechanism that regulates TFEB activity. However, there are currently no studies on whether the adjustment of the acetylation level of TFEB can reduce the damage of diabetic TECs. In this study, we investigated the effect of Trichostatin A (TSA), a typical deacetylase inhibitor, on TFEB activity and damage to TECs in both in vivo and in vitro models of DKD. Here, we show that TSA treatment can alleviate the pathological damage of glomeruli and renal tubules and delay the DKD progression in db/db mice, which is associated with the increased expression of TFEB and its downstream genes. In vitro studies further confirmed that TSA treatment can upregulate the acetylation level of TFEB, promote its nuclear translocation, and activate the expression of its downstream genes, thereby reducing the apoptosis level of TECs. TFEB deletion or HDAC6 knockdown in TECs can counteract the activation effect of TSA on autophagolysosomal pathway. We also found that TFEB enhances the transcription of Tfeb through binding to its promoter and promotes its own expression. Our results, thus, provide a novel therapeutic mechanism for DKD that the alleviation of TEC damage by activating the autophagic lysosomal pathway through upregulating TFEB acetylation can, thus, delay DKD progression.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Diabetic Nephropathies , Epithelial Cells , Histone Deacetylase Inhibitors , Hydroxamic Acids , Kidney Tubules, Proximal , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Diabetic Nephropathies/metabolism , Mice , Acetylation , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Hydroxamic Acids/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Male , Mice, Inbred C57BL , Autophagy/drug effects , Apoptosis/drug effects
3.
Adv Sci (Weinh) ; : e2402284, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994917

ABSTRACT

Although messenger RNA translation is tightly regulated to preserve protein synthesis and cellular homeostasis, chronic exposure to interferon-γ (IFN-γ) in several cancers can lead to tryptophan (Trp) shortage via the indoleamine-2,3-dioxygenase (IDO)- kynurenine pathway and therefore promotes the production of aberrant peptides by ribosomal frameshifting and tryptophan-to-phenylalanine (W>F) codon reassignment events (substitutants) specifically at Trp codons. However, the effect of Trp depletion on the generation of aberrant peptides by ribosomal mistranslation in gastric cancer (GC) is still obscure. Here, it is shows that the abundant infiltrating lymphocytes in EBV-positive GC continuously secreted IFN-γ, upregulated IDO1 expression, leading to Trp shortage and the induction of W>F substitutants. Intriguingly, the production of W>F substitutants in EBV-positive GC is linked to antigen presentation and the activation of the mTOR/eIF4E signaling pathway. Inhibiting either the mTOR/eIF4E pathway or EIF4E expression counteracted the production and antigen presentation of W>F substitutants. Thus, the mTOR/eIF4E pathway exposed the vulnerability of gastric cancer by accelerating the production of aberrant peptides and boosting immune activation through W>F substitutant events. This work proposes that EBV-positive GC patients with mTOR/eIF4E hyperactivation may benefit from anti-tumor immunotherapy.

4.
Biomaterials ; 311: 122700, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38996671

ABSTRACT

Impaired wound healing due to insufficient cell proliferation and angiogenesis is a significant physical and psychological burden to patients worldwide. Therapeutic delivery of exogenous growth factors (GFs) at high doses for wound repair is non-ideal as GFs have poor stability in proteolytic wound environments. Here, we present a two-stage strategy using bioactive sucralfate-based microneedle (SUC-MN) for delivering interleukin-4 (IL-4) to accelerate wound healing. In the first stage, SUC-MN synergistically enhanced the effect of IL-4 through more potent reprogramming of pro-regenerative M2-like macrophages via the JAK-STAT pathway to increase endogenous GF production. In the second stage, sucralfate binds to GFs and sterically disfavors protease degradation to increase bioavailability of GFs. The IL-4/SUC-MN technology accelerated wound healing by 56.6 % and 46.5 % in diabetic mice wounds and porcine wounds compared to their respective untreated controls. Overall, our findings highlight the innovative use of molecular simulations to identify bioactive ingredients and their incorporation into microneedles for promoting wound healing through multiple synergistic mechanisms.


Subject(s)
Macrophages , Needles , Sucralfate , Wound Healing , Animals , Wound Healing/drug effects , Mice , Macrophages/metabolism , Macrophages/drug effects , Sucralfate/pharmacology , Swine , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/administration & dosage , Mice, Inbred C57BL , Diabetes Mellitus, Experimental , Interleukin-4/metabolism , RAW 264.7 Cells , Male
5.
Nat Commun ; 15(1): 5310, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906867

ABSTRACT

Epstein-Barr virus (EBV) infects more than 95% of adults worldwide and is closely associated with various malignancies. Considering the complex life cycle of EBV, developing vaccines targeting key entry glycoproteins to elicit robust and durable adaptive immune responses may provide better protection. EBV gHgL-, gB- and gp42-specific antibodies in healthy EBV carriers contributed to sera neutralizing abilities in vitro, indicating that they are potential antigen candidates. To enhance the immunogenicity of these antigens, we formulate three nanovaccines by co-delivering molecular adjuvants (CpG and MPLA) and antigens (gHgL, gB or gp42). These nanovaccines induce robust humoral and cellular responses through efficient activation of dendritic cells and germinal center response. Importantly, these nanovaccines generate high levels of neutralizing antibodies recognizing vulnerable sites of all three antigens. IgGs induced by a cocktail vaccine containing three nanovaccines confer superior protection from lethal EBV challenge in female humanized mice compared to IgG elicited by individual NP-gHgL, NP-gB and NP-gp42. Importantly, serum antibodies elicited by cocktail nanovaccine immunization confer durable protection against EBV-associated lymphoma. Overall, the cocktail nanovaccine shows robust immunogenicity and is a promising candidate for further clinical trials.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Epstein-Barr Virus Infections , Glycoproteins , Nanovaccines , Animals , Female , Humans , Mice , Adjuvants, Immunologic/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/prevention & control , Epstein-Barr Virus Infections/virology , Glycoproteins/immunology , Glycoproteins/administration & dosage , Herpesvirus 4, Human/immunology , Lymphoma/immunology , Lymphoma/virology , Nanovaccines/immunology
6.
Acta Pharm Sin B ; 14(6): 2761-2772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828152

ABSTRACT

Although the discovery of insulin 100 years ago revolutionized the treatment of diabetes, its therapeutic potential is compromised by its short half-life and narrow therapeutic index. Current long-acting insulin analogs, such as insulin-polymer conjugates, are mainly used to improve pharmacokinetics by reducing renal clearance. However, these conjugates are synthesized without sacrificing the bioactivity of insulin, thus retaining the narrow therapeutic index of native insulin, and exceeding the efficacious dose still leads to hypoglycemia. Here, we report a kind of di-PEGylated insulin that can simultaneously reduce renal clearance and receptor-mediated clearance. By impairing the binding affinity to the receptor and the activation of the receptor, di-PEGylated insulin not only further prolongs the half-life of insulin compared to classical mono-PEGylated insulin but most importantly, increases its maximum tolerated dose 10-fold. The target of long-term glycemic management in vivo has been achieved through improved pharmacokinetics and a high dose. This work represents an essential step towards long-acting insulin medication with superior safety in reducing hypoglycemic events.

7.
J Econ Entomol ; 117(4): 1447-1458, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38852046

ABSTRACT

The egg parasitoid Mesocomys trabalae Yao, Yang, and Zhao is used as a biocontrol agent against the emerging defoliator pest Caligula japonica Moore in East Asia. It has been proven that the eggs of Antheraea pernyi Guérin-Méneville can be used as a factitious host for the mass production of M. trabalae. We examined the parasitic behavior and morphological characteristics of the developmental stages of M. trabalae reared on A. pernyi eggs. The parasitic behavior of M. trabalae encompasses 10 steps, involving searching, antennation, locating the oviposition site, drilling, probing, detecting, oviposition, host feeding, grooming, and resting, with the oviposition step further divided into 3 stages. We determined that the parasitoid released an egg during the second stage of the oviposition step, while her body remained in a relatively static state. Among all the steps in parasitic behavior, probing occupied the longest time, accounting for 26.33% of the entire parasitism process. It was followed by oviposition (15.88%), drilling (15.10%), antennation (13.09%), detecting (10.79%), host feeding (10.02%), and the remaining steps, each occupying less than 5.00% of the total time in steps. The pre-emergence of adult M. trabalae comprised of 4 stages: egg (0-1 day), larva (2-6 days), prepupa (7-11 days), pupa (12-20 days), followed by the development into an adult, and it usually took 20-22 days to develop from an egg into an adult at 25°C. This study advances our understanding of the biology of Mesocomys parasitoids and their mass-rearing for use in augmentation programs.


Subject(s)
Host-Parasite Interactions , Larva , Pest Control, Biological , Wasps , Animals , Wasps/physiology , Wasps/growth & development , Larva/growth & development , Larva/physiology , Larva/parasitology , Female , Oviposition , Ovum/growth & development , Ovum/parasitology , Bombyx/growth & development , Bombyx/parasitology , Moths/parasitology , Moths/growth & development , Pupa/growth & development , Pupa/parasitology , Male , East Asian People
8.
ChemMedChem ; : e202400199, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722488

ABSTRACT

Lipid nanoparticles (LNPs) are the most clinically successful drug delivery systems that have accelerated the development of mRNA drugs and vaccines. Among various structural components of LNPs, more recent attention has been paid in ionizable lipids (ILs) that was supposed as the key component in determining the effectiveness of LNPs for in vivo mRNA delivery. ILs are typically comprised of three moieties including ionizable heads, linkers, and hydrophobic tails, which suggested that the combination of different functional groups in three moieties could produce ILs with diverse chemical structures and biological identities. In this concept article, we provide a summary of chemical design strategy for high-performing IL candidates and discuss their structure-activity relationships for shifting tissue-selective mRNA delivery. We also propose an outlook for the development of next-generation ILs, enabling the broader translation of mRNA formulated with LNPs.

9.
Front Pharmacol ; 15: 1391562, 2024.
Article in English | MEDLINE | ID: mdl-38783944

ABSTRACT

Gastric/gastroesophageal junction (G/GEJ) cancer represents a significant global health challenge. Radical surgery remains the cornerstone of treatment for resectable G/GEJ cancer. Supported by robust evidence from multiple clinical studies, therapeutic approaches, including adjuvant chemotherapy or chemoradiation, and perioperative chemotherapy, are generally recommended to reduce the risk of recurrence and enhance long-term survival outcomes post-surgery. In recent years, immune checkpoint inhibitors (ICIs) have altered the landscape of systemic treatment for advanced or metastatic G/GEJ cancer, becoming the standard first-line therapy for specific patients. Consequently, exploring the efficacy of ICIs in the adjuvant or neoadjuvant setting for resectable G/GEJ cancer is worthwhile. This review summarizes the current advances in the application of ICIs for resectable G/GEJ cancer.

10.
Clin Transl Sci ; 17(5): e13829, 2024 May.
Article in English | MEDLINE | ID: mdl-38769746

ABSTRACT

To investigate the effects of neutrophil elastase inhibitor (sivelestat sodium) on gastrointestinal function in sepsis. A reanalysis of the data from previous clinical trials conducted at our center was performed. Septic patients were divided into either the sivelestat group or the non-sivelestat group. The gastrointestinal dysfunction score (GIDS), feeding intolerance (FI) incidence, serum levels of intestinal barrier function and inflammatory biomarkers were recorded. The clinical severity and outcome variables were also documented. A total of 163 septic patients were included. The proportion of patients with GIDS ≥2 in the sivelestat group was reduced relative to that in the non-sivelestat group (9.6% vs. 22.5%, p = 0.047) on the 7th day of intensive care unit (ICU) admission. The FI incidence was also remarkably reduced in the sivelestat group in contrast to that in the non-sivelestat group (21.2% vs. 37.8%, p = 0.034). Furthermore, the sivelestat group had fewer days of FI [4 (3, 4) vs. 5 (4-6), p = 0.008]. The serum levels of d-lactate (p = 0.033), intestinal fatty acid-binding protein (p = 0.005), interleukin-6 (p = 0.001), white blood cells (p = 0.007), C-reactive protein (p = 0.001), and procalcitonin (p < 0.001) of the sivelestat group were lower than those of the non-sivelestat group. The sivelestat group also demonstrated longer ICU-free days [18 (0-22) vs. 13 (0-17), p = 0.004] and ventilator-free days [22 (1-24) vs. 16 (1-19), p = 0.002] compared with the non-sivelestat group. In conclusion, sivelestat sodium administration appears to improve gastrointestinal dysfunction, mitigate dysregulated inflammation, and reduce disease severity in septic patients.


Subject(s)
Gastrointestinal Diseases , Glycine , Sepsis , Sulfonamides , Humans , Sepsis/drug therapy , Sepsis/complications , Sepsis/blood , Male , Female , Glycine/analogs & derivatives , Glycine/therapeutic use , Middle Aged , Aged , Sulfonamides/therapeutic use , Sulfonamides/administration & dosage , Gastrointestinal Diseases/drug therapy , Proteinase Inhibitory Proteins, Secretory , Biomarkers/blood , Treatment Outcome
11.
ACS Appl Mater Interfaces ; 16(20): 25698-25709, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717294

ABSTRACT

Much of current clinical interest has focused on mRNA therapeutics for the treatment of lung-associated diseases, such as infections, genetic disorders, and cancers. However, the safe and efficient delivery of mRNA therapeutics to the lungs, especially to different pulmonary cell types, is still a formidable challenge. In this paper, we proposed a cationic lipid pair (CLP) strategy, which utilized the liver-targeted ionizable lipid and its derived quaternary ammonium lipid as the CLP to improve liver-to-lung tropism of four-component lipid nanoparticles (LNPs) for in vivo mRNA delivery. Interestingly, the structure-activity investigation identified that using liver-targeted ionizable lipids with higher mRNA delivery performance and their derived lipid counterparts is the optimal CLP design for improving lung-targeted mRNA delivery. The CLP strategy was also verified to be universal and suitable for clinically available ionizable lipids such as SM-102 and ALC-0315 to develop lung-targeted LNP delivery systems. Moreover, we demonstrated that CLP-based LNPs were safe and exhibited potent mRNA transfection in pulmonary endothelial and epithelial cells. As a result, we provided a powerful CLP strategy for shifting the mRNA delivery preference of LNPs from the liver to the lungs, exhibiting great potential for broadening the application scenario of mRNA-based therapy.


Subject(s)
Cations , Lipids , Liver , Lung , Nanoparticles , RNA, Messenger , Nanoparticles/chemistry , Lung/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Lipids/chemistry , Animals , Liver/metabolism , Humans , Cations/chemistry , Mice , Gene Transfer Techniques , Transfection/methods , Liposomes
12.
Adv Sci (Weinh) ; 11(28): e2400206, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38639442

ABSTRACT

Ulcerative colitis (UC) is a complicated and recurrent intestinal disease. Currently available drugs for UC treatment are scarce, therefore, novel therapeutic drugs for the UC are urgently to be developed. Gingerenone A (GA) is a phenolic compound known for its anti-inflammatory effect, but its effect on UC remains unknown. Here, it is shown that GA protects mice against UC, which is closely associated with inhibiting intestinal mucosal inflammation and enhancing intestinal barrier integrity in vivo and in vitro. Of note, RNA sequencing analysis demonstrates an evident correlation with IL-17 signaling pathway after GA treatment, and this effect is further corroborated by Western blot. Mechanistically, GA directly interacts with IL-17RA protein through pull-down, surface plasmon resonance analysis and molecular dynamics simulation. Importantly, lentivirus-mediated IL-17RA/Act1 knock-down or GA co-treatment with brodalumab/ixekizumab significantly impairs the protective effects of GA against DSS-induced inflammation and barrier dysfunction, suggesting a critical role of IL-17RA signaling for GA-mediated protection against UC. Overall, these results indicate that GA is an effective agent against UC mainly through the direct binding of IL-17RA to inhibit inflammatory signaling activation.


Subject(s)
Colitis, Ulcerative , Disease Models, Animal , Intestinal Mucosa , Receptors, Interleukin-17 , Animals , Male , Mice , Anti-Inflammatory Agents/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Intestinal Barrier Function , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Mice, Inbred C57BL , Receptors, Interleukin-17/metabolism , Receptors, Interleukin-17/genetics , Signal Transduction/drug effects
13.
ACS Nano ; 18(17): 11058-11069, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38630984

ABSTRACT

Perioperative neurocognitive disorder (PND) is a common complication in surgical patients. While many interventions to prevent PND have been studied, the availability of treatment methods is limited. Thus, it is crucial to delve into the mechanisms of PND, pinpoint therapeutic targets, and develop effective treatment approaches. In this study, reduced dorsal tenia tecta (DTT) neuronal activity was found to be associated with tibial fracture surgery-induced PND, indicating that a neuronal excitation-inhibition (E-I) imbalance could contribute to PND. Optogenetics in the DTT brain region was conducted using upconversion nanoparticles (UCNPs) with the ability to convert 808 nm near-infrared light to visible wavelengths, which triggered the activation of excitatory neurons with minimal damage in the DTT brain region, thus improving cognitive impairment symptoms in the PND model. Moreover, this noninvasive intervention to modulate E-I imbalance showed a positive influence on mouse behavior in the Morris water maze test, which demonstrates that UCNP-mediated optogenetics is a promising tool for the treatment of neurological imbalance disorders.


Subject(s)
Nanoparticles , Optogenetics , Animals , Optogenetics/methods , Mice , Nanoparticles/chemistry , Male , Maze Learning , Postoperative Cognitive Complications/etiology , Mice, Inbred C57BL , Neurons , Tibial Fractures/surgery , Infrared Rays
14.
aBIOTECH ; 5(1): 52-70, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38576428

ABSTRACT

Bread wheat (Triticum aestivum) is an important crop and serves as a significant source of protein and calories for humans, worldwide. Nevertheless, its large and allopolyploid genome poses constraints on genetic improvement. The complex reticulate evolutionary history and the intricacy of genomic resources make the deciphering of the functional genome considerably more challenging. Recently, we have developed a comprehensive list of versatile computational tools with the integration of statistical models for dissecting the polyploid wheat genome. Here, we summarize the methodological innovations and applications of these tools and databases. A series of step-by-step examples illustrates how these tools can be utilized for dissecting wheat germplasm resources and unveiling functional genes associated with important agronomic traits. Furthermore, we outline future perspectives on new advanced tools and databases, taking into consideration the unique features of bread wheat, to accelerate genomic-assisted wheat breeding.

15.
Plant Commun ; 5(5): 100883, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38491771

ABSTRACT

Spelt (Triticum aestivum ssp. spelta) is an important wheat subspecies mainly cultivated in Europe before the 20th century that has contributed to modern wheat breeding as a valuable genetic resource. However, relatively little is known about the origins and maintenance of spelt populations. Here, using resequencing data from 416 worldwide wheat accessions, including representative spelt wheat, we demonstrate that European spelt emerged when primitive hexaploid wheat spread to the west and hybridized with pre-settled domesticated emmer, the putative maternal donor. Genomic introgression regions from domesticated emmer confer spelt's primitive morphological characters used for species taxonomy, such as tenacious glumes and later flowering. We propose a haplotype-based "spelt index" to identify spelt-type wheat varieties and to quantify utilization of the spelt gene pool in modern wheat cultivars. This study reveals the genetic basis for the establishment of the spelt wheat subspecies in a specific ecological niche and the vital role of the spelt gene pool as a unique germplasm resource in modern wheat breeding.


Subject(s)
Gene Pool , Genome, Plant , Plant Breeding , Triticum , Triticum/genetics , Haplotypes , Genomics , Evolution, Molecular
16.
J Control Release ; 369: 88-100, 2024 May.
Article in English | MEDLINE | ID: mdl-38471640

ABSTRACT

Cell-free DNA (cfDNA) released from dead cells could be a player in some autoimmune disorders by activating Toll-like receptor 9 (TLR9) and inducing proinflammatory cytokines. Cationic nanoparticles (cNPs) address cfDNA clearance, yet challenges persist, including toxicity, low specificity and ineffectiveness against endocytosed cfDNA. This study introduced pH-sensitive cNPs, reducing off-target effects and binding cfDNA at inflammatory sites. This unique approach inhibits the TLR9 pathway, offering a novel strategy for inflammation modulation. Synthesized cNPs, with distinct cationic moieties, exhibit varied pKa values, enhancing cfDNA binding. Comprehensive studies elucidate the mechanism, demonstrating minimal extracellular binding, enhanced endosomal DNA binding, and optimal tumor necrosis factor-α suppression. In a traumatic brain injury mice model, pH-sensitive cNPs effectively suppress inflammatory cytokines, highlighting their potential in acute inflammation regulation.


Subject(s)
Cations , Cell-Free Nucleic Acids , Endosomes , Inflammation , Mice, Inbred C57BL , Nanoparticles , Toll-Like Receptor 9 , Animals , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Endosomes/metabolism , Inflammation/drug therapy , Toll-Like Receptor 9/metabolism , Male , Brain Injuries, Traumatic/drug therapy , Mice , Cytokines/metabolism , Humans , Tumor Necrosis Factor-alpha/metabolism
17.
Langmuir ; 40(14): 7286-7299, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38535519

ABSTRACT

As a unique unimolecular nanoobject, molecular bottlebrushes (MBBs) have attracted great interest from researchers in nanocarriers attributed to their defined structure, size, and shape. MBBs with various architectures have been proposed and constructed with well-defined domains for loading "cargos", including core, shell, and periphery functional groups. Compared with nanomaterials based on self-assembly, MBBs have lots of advantages, including facile synthesis, flexible compositions, favorable stability, and tunable size and shape, that make them a promising nanoplatform for various applications. This paper summarizes the recent progress during the past decade, with a focus on developments within the last five years in the synthesis of MBBs with different architectures, and uses them as nanocarriers in drug delivery, biological imaging, and other emerging applications.


Subject(s)
Drug Delivery Systems , Nanostructures , Drug Delivery Systems/methods , Nanostructures/chemistry
18.
World J Gastroenterol ; 30(6): 607-609, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38463024

ABSTRACT

The present letter to the editor is related to the study titled 'Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells'. Angiotensin-converting enzyme 2 can alleviate liver fibrosis by regulating autophagy of hepatic stellate cells and affecting the renin-angiotensin system.


Subject(s)
Peptidyl-Dipeptidase A , Renin-Angiotensin System , Animals , Mice , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2 , Fibrosis , Hepatic Stellate Cells/metabolism , Liver Cirrhosis , Peptidyl-Dipeptidase A/metabolism
19.
New Phytol ; 242(2): 507-523, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38362849

ABSTRACT

Polyploidization is a major event driving plant evolution and domestication. However, how reshaped epigenetic modifications coordinate gene transcription to generate phenotypic variations during wheat polyploidization is currently elusive. Here, we profiled transcriptomes and DNA methylomes of two diploid wheat accessions (SlSl and AA) and their synthetic allotetraploid wheat line (SlSlAA), which displayed elongated root hair and improved root capability for nitrate uptake and assimilation after tetraploidization. Globally decreased DNA methylation levels with a reduced difference between subgenomes were observed in the roots of SlSlAA. DNA methylation changes in first exon showed strong connections with altered transcription during tetraploidization. Homoeolog-specific transcription was associated with biased DNA methylation as shaped by homoeologous sequence variation. The hypomethylated promoters showed significantly enriched binding sites for MYB, which may affect gene transcription in response to root hair growth. Two master regulators in root hair elongation pathway, AlCPC and TuRSL4, exhibited upregulated transcription levels accompanied by hypomethylation in promoter, which may contribute to the elongated root hair. The upregulated nitrate transporter genes, including NPFs and NRTs, also are significantly associated with hypomethylation, indicating an epigenetic-incorporated regulation manner in improving nitrogen use efficiency. Collectively, these results provided new insights into epigenetic changes in response to crop polyploidization and underscored the importance of epigenetic regulation in improving crop traits.


Subject(s)
DNA Methylation , Tetraploidy , DNA Methylation/genetics , Triticum/genetics , Epigenesis, Genetic , Transcriptome , Gene Expression Regulation, Plant
20.
Cell Death Discov ; 10(1): 69, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341438

ABSTRACT

Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI). The kidney is susceptible to IRI under several clinical conditions, including hypotension, sepsis, and surgical procedures, such as partial nephrectomy and kidney transplantation. Extensive research has been conducted on the mechanism and intervention strategies of renal IRI in past decades; however, the complex pathophysiology of IRI-induced AKI (IRI-AKI) is not fully understood, and there remains a lack of effective treatments for AKI. Renal IRI involves several processes, including reactive oxygen species (ROS) production, inflammation, and apoptosis. Mitochondria, the centers of energy metabolism, are increasingly recognized as substantial contributors to the early phases of IRI. Multiple mitochondrial lesions have been observed in the renal tubular epithelial cells (TECs) of IRI-AKI mice, and damaged or dysfunctional mitochondria are toxic to the cells because they produce ROS and release cell death factors, resulting in TEC apoptosis. In this review, we summarize the recent advances in the mitochondrial pathology in ischemic AKI and highlight promising therapeutic approaches targeting mitochondrial dysfunction to prevent or treat human ischemic AKI.

SELECTION OF CITATIONS
SEARCH DETAIL