Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
J Org Chem ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051980

ABSTRACT

N-Acyl/sulfonyl-α-functionalized 1,2,3,4-tetrahydroisoquinolines (THIQs) are significant structural motifs in organic synthesis and drug discovery. However, the one-pot approach enabling direct difunctionalization of THIQs remains challenging. Herein we report a photomediated one-pot three-component strategy to access N-acyl/sulfonyl-α-functionalized THIQs. This method features the use of oxygen (from air) as the green oxidant, high atom and step economy, and decent structural diversity. The synthetic applicability of the method was further demonstrated via the facile construction of valuable bioactive molecules. Mechanistic studies indicated that oxidation with singlet oxygen and the acceptor-less dehydrogenation were involved in the photoredox process.

2.
Adv Sci (Weinh) ; : e2404266, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38986026

ABSTRACT

Precisely controlling the product selectivity of a reaction is an important objective in organic synthesis. α-Ketoamides are vital intermediates in chemical transformations and privileged motifs in numerous drugs, natural products, and biologically active molecules. The selective synthesis of α-ketoamides from feedstock chemicals in a safe and operationally simple manner under mild conditions is a long-standing catalysis challenge. Herein, an unprecedented TBD-switched Pd-catalyzed double isocyanide insertion reaction for assembling ketoamides in aqueous DMSO from (hetero)aryl halides and pseudohalides under mild conditions is reported. The effectiveness and utility of this protocol are demonstrated by its diverse substrate scope (93 examples), the ability to late-stage modify pharmaceuticals, scalability to large-scale synthesis, and the synthesis of pharmaceutically active molecules. Mechanistic studies indicate that TBD is a key ligand that modulates the Pd-catalyzed double isocyanide insertion process, thereby selectively providing the desired α-ketoamides in a unique manner. In addition, the imidoylpalladium(II) complex and α-ketoimine amide are successfully isolated and determined by X-ray analysis, confirming that they are probable intermediates in the catalytic pathway.

3.
Bioresour Bioprocess ; 11(1): 64, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954282

ABSTRACT

Regioselective and enantioselective hydroxylation of propargylic C-H bonds are useful reactions but often lack appropriate catalysts. Here a green and efficient asymmetric hydroxylation of primary and secondary C-H bonds at propargylic positions has been established. A series of optically active propargylic alcohols were prepared with high regio- and enantioselectivity (up to 99% ee) under mild reaction conditions by using P450tol, while the C≡C bonds in the molecule remained unreacted. This protocol provides a green and practical method for constructing enantiomerically chiral propargylic alcohols. In addition, we also demonstrated that the biohydroxylation strategy was able to scaled up to 2.25 mmol scale with the production of chiral propargyl alcohol 2a at a yield of 196 mg with 96% ee, which's an important synthetic intermediate of antifungal drug Ravuconazole.

4.
Org Lett ; 26(15): 3195-3201, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38563798

ABSTRACT

A facile photocatalytic radical [4+2] cyclization of N-aryl-α-amino acids with various alkenes to access structurally polysubstituted tetrahydroquinolines has been developed. Using a simple bipyridine as a catalyst, different N-aryl-α-amino acids could be utilized as the radical precursors to react with diverse electrophilic alkenes, including exocyclic terminal alkenes, acyclic terminal alkenes, and cycloalkenes, producing 10 types of nitrogen-containing heterocyclic compounds fused in multiple frameworks in generally moderate yields with good diastereoselectivities. Scale-up synthesis and transformations of the products further demonstrated the synthetic application of this protocol. Moreover, a decarboxylative radial pathway via a proton-coupled electron transfer process for illustration of this [4+2] cyclization was proposed on the basis of the control experiments. This process is highlighted by a simple bipyridine photocatalysis, mild reaction conditions, various N-aryl-α-amino acids and alkene materials, and application for the modification of natural products.

5.
Org Lett ; 26(15): 3151-3157, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38564713

ABSTRACT

A facile iron(II)-catalyzed radical [3 + 2] cyclization of N-aryl cyclopropylamines with various alkenes to access the structurally polyfunctionalized cyclopentylamine scaffolds has been developed. Using low-cost FeCl2·4H2O as catalyst, N-aryl cyclopropylamines could be utilized to react with a wide range of alkenes including exocyclic/acyclic terminal alkenes, cycloalkenes, alkenes from the natural-occurring compounds (Alantolactone, Costunolide), and known drugs (Ibuprofen, l-phenylalanine, Flurbiprofen) to obtain a variety of cyclopentylamines fused with different useful motifs in generally good yields and diastereoselectivities. The highlight of this protocol is also featured by no extra oxidant, no base, EtOH as the solvent, gram-scale synthesis, and further diverse transformations of the synthetic products. More importantly, an iron(II)-mediated hydrogen radical dissociation pathway was proposed based on the mechanism research experiments.

6.
Org Biomol Chem ; 22(16): 3204-3208, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38563260

ABSTRACT

An efficient palladium-catalyzed [2 + 2 + 1] annulation of 3-iodochromones, bridged olefins, and iodomethane is described, affording a range of chromone-containing polycyclic compounds. Additionally, the corresponding deuterated products were smoothly obtained with iodomethane-d3 instead of iodomethane. Moreover, the synthetic utility of this method is further substantiated by gram scale preparation and application to late-stage modification of estrone.

7.
Nanomicro Lett ; 16(1): 167, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564086

ABSTRACT

Microwave absorbing materials (MAMs) characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications. Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions, while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals. Herein, we have successfully implemented compositional and structural engineering to fabricate hollow SiC/C microspheres with controllable composition. The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites. The formation of hollow structure not only favors lightweight feature, but also generates considerable contribution to microwave attenuation capacity. With the synergistic effect of composition and structure, the optimized SiC/C composite exhibits excellent performance, whose the strongest reflection loss intensity and broadest effective absorption reach - 60.8 dB and 5.1 GHz, respectively, and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies. In addition, the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.

8.
Int J Biol Macromol ; 260(Pt 1): 129540, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244733

ABSTRACT

Methionine sulfoxide reductase A (MsrA) has emerged as promising biocatalysts in the enantioselective kinetic resolution of racemic (rac) sulfoxides. In this study, we engineered robust MsrA variants through directed evolution, demonstrating substantial improvements of thermostability. Mechanism analysis reveals that the enhanced thermostability results from the strengthening of intracellular interactions and increase in molecular compactness. Moreover, these variants demonstrated concurrent improvements in catalytic activities, and notably, these enhancements in stability and activity collectively contributed to a significant improvement in enzyme substrate tolerance. We achieved kinetic resolution on a series of rac-sulfoxides with high enantioselectivity under initial substrate concentrations reaching up to 93.0 g/L, representing a great improvement in the aspect of the substrate concentration for biocatalytic preparation of chiral sulfoxide. Hence, the simultaneously improved thermostability, activity and substrate tolerance of MsrA represent an excellent biocatalyst for the green synthesis of optically pure sulfoxides.


Subject(s)
Methionine Sulfoxide Reductases , Sulfoxides , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/analysis , Methionine Sulfoxide Reductases/chemistry , Sulfoxides/chemistry , Methionine
9.
Angew Chem Int Ed Engl ; 63(13): e202318887, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38237082

ABSTRACT

Trifluoromethyl cationic carbyne (CF3 C+ :) possessing dual carbene-carbocation behavior emulated as trifluoromethyl metal-carbynoid (CF3 C+ =M) has not been explored yet, and its reaction characteristics are unknown. Herein, a novel α-diazotrifluoroethyl sulfonium salt was prepared and used in Rh-catalyzed three-component [2+1+2] cycloadditions for the first time with commercially available N-fused heteroarenes and nitriles, yielding a series of imidazo[1,5-a] N-heterocycles that are of interest in medicinal chemistry, in which the insertion of trifluoromethyl Rh-carbynoid (CF3 C+ =Rh) into C=N bonds of N-fused heteroarenes was involved. This strategy demonstrates synthetic applications in late-stage modification of pharmaceuticals, construction of CD3 -containing N-heterocycles, gram-scale experiments, and synthesis of phosphodiesterase 10A inhibitor analog. These highly valuable and modifiable imidazo[1,5-a] N-heterocycles exhibit good antitumor activity in vitro, thus demonstrating their potential applications in medicinal chemistry.

10.
Chemistry ; 30(19): e202304081, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38288909

ABSTRACT

Optically pure sulfoxides are valuable organosulfur compounds extensively employed in medicinal and organic synthesis. In this study, we present a biocatalytic oxidation-reduction cascade system designed for the preparation of enantiopure sulfoxides. The system involves the cooperation of a low-enantioselective chimeric oxidase SMO (styrene monooxygenase) with a high-enantioselective reductase MsrA (methionine sulfoxide reductase A), facilitating "non-selective oxidation and selective reduction" cycles for prochiral sulfide oxidation. The regeneration of requisite cofactors for MsrA and SMO was achieved via a cascade catalysis process involving three auxiliary enzymes, sustained by cost-effective D-glucose. Under the optimal reaction conditions, a series of heteroaryl alkyl, aryl alkyl and dialkyl sulfoxides in R configuration were synthesized through this "one-pot, one step" cascade reaction. The obtained compounds exhibited high yields of >90 % and demonstrated enantiomeric excess (ee) values exceeding 90 %. This study represents an unconventional and efficient biocatalytic way in utilizing the low-enantioselective oxidase for the synthesis of enantiopure sulfoxides.


Subject(s)
Methionine Sulfoxide Reductases , Sulfoxides , Biocatalysis , Oxidation-Reduction , Catalysis , Stereoisomerism
11.
J Colloid Interface Sci ; 652(Pt A): 1043-1052, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37639926

ABSTRACT

Visible-light-driven nicotinamide adenine dinucleotide (NADH) regeneration is one of the most effective measures, and cadmium sulfide (CdS) materials are typically used as low-cost photocatalysts. The CdS photocatalysts, however, still suffer from low regeneration efficiency and poor cycle stability. In this work, the CdS quantum dots (QDs) less than 10 nm embedded onto silica gel (CdS QDs/Silica gel) were constructed for visible-light-driven NADH regeneration by a successive ionic layer adsorption reaction and ball milling method. Results demonstrate that the photosensitivity of the CdS QDs/Silica gel composite was 31 times higher than that of the bulk CdS. Moreover, the conduction band (CB) edge of the CdS QDs/Silica gel composite is -1.34 eV, which is more negative 0.5 eV than that of the bulk CdS. The obtained CdS QDs/Silica gel composites showed the highest NADH regeneration yields of 68.8% under visible-light (LED, 420 nm) illumination and can be reused for over 40 cycles. Finally, the bioactivity of NADH toward enzyme catalysis is further confirmed by the hydrogenation of benzaldehyde to benzyl alcohol catalyzed with an alcohol dehydrogenase as enzyme catalysis.

12.
Org Lett ; 25(27): 5049-5054, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37405417

ABSTRACT

A biocatalytic approach for the synthesis of metaxalone and its analogues was developed based on the reaction of epoxides and cyanate catalyzed by halohydrin dehalogenase. Gram-scale synthesis of chiral and racemic metaxalone was achieved with 44% (98% ee) and 81% yields, respectively, by protein engineering of the halohydrin dehalogenase HHDHamb from Acidimicrobiia bacterium. Additionally, various metaxalone analogues were synthesized at 28-40% yields (90-99% ee) for chiral forms and 77-92% yields for racemic forms.


Subject(s)
Oxazolidinones , Protein Engineering , Biocatalysis , Bacteria
13.
Bioorg Chem ; 138: 106640, 2023 09.
Article in English | MEDLINE | ID: mdl-37320911

ABSTRACT

Enantiopure ß-nitroalcohols, as an important class of nitro-containing compounds, are essential building blocks in pharmaceutical and organic chemistry, particularly for the synthesis of ß-adrenergic blockers. In this study, we present the successful protein engineering of halohydrin dehalogenase HHDHamb for the enantioselective bio-nitration of various phenyl glycidyl ethers to the corresponding chiral ß-nitroalcohols, using the inexpensive, commercially available, and safer nitrite as a nitrating agent. The chiral (R)- and (S)-1-nitro-3-phenoxypropan-2-ols were synthesized by the several enantiocomplementary HHDHamb variants through the whole-cell biotransformation, which showed good catalytic efficiency (up to 43% isolated yields) and high optical purity (up to >99% ee). In addition, we also demonstrated that the bio-nitration method was able to tolerate the substrate at a high concentration of 1000 mM (150 g/L). Furthermore, representative synthesis of two optically active enantiomers of the ß-adrenergic blocker metoprolol was successfully achieved by utilizing the corresponding chiral ß-nitroalcohols as precursors.


Subject(s)
Adrenergic beta-Antagonists , Phenyl Ethers , Adrenergic beta-Antagonists/chemistry , Biocatalysis , Catalysis , Stereoisomerism
14.
Org Biomol Chem ; 21(16): 3417-3422, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37017279

ABSTRACT

Optically pure sulfoxides are noteworthy compounds that find wide applications in various industrial fields. Here, we report a methionine sulfoxide reductase B (MsrB) homologue that exhibits high enantioselectivity and broad substrate scope for the kinetic resolution of racemic (rac) sulfoxides. This MsrB homologue, named liMsrB, was identified from Limnohabitans sp. 103DPR2 and showed good activity together with enantioselectivity towards a series of aromatic, heteroaromatic, alkyl and thioalkyl sulfoxides. Chiral sulfoxides in the S configuration were prepared in approximately 50% yield and 92-99% enantiomeric excess through kinetic resolution at an initial substrate concentration of up to 90 mM (11.2 g L-1). This study presents an efficient route for the enzymatic preparation of (S)-sulfoxides through kinetic resolution.


Subject(s)
Methionine Sulfoxide Reductases , Sulfoxides , Sulfoxides/chemistry , Kinetics , Stereoisomerism , Methionine
15.
J Org Chem ; 88(5): 3238-3253, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36866581

ABSTRACT

A practical and efficient electrochemical intramolecular amino- or oxysulfonylation of internal alkenes equipped with pendant nitrogen or oxygen-centered nucleophiles with sodium sulfinate was developed. Under undivided electrolytic cell conditions, a variety of sulfonylated N-heterocycles and O-heterocycles, such as tetrahydrofurans, tetrahydropyrans, oxepanes, tetrahydropyrroles, piperidines, δ-valerolactones, etc., were efficiently prepared from easily accessible unsaturated alcohols, carboxylic acids, and N-tosyl amines without the need for additional metal or exogenous oxidant. The robust electrochemical transformation features excellent redox economy, high diastereoselectivity, and broad substrate specificity, which provide a general and practical access to sulfone-containing heterocycles and would facilitate the related synthetic and biological studies based on this electrosynthesis.

16.
Chembiochem ; 24(7): e202200719, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36734180

ABSTRACT

Optically active epoxides play important roles in pharmaceutical, agricultural and fine chemical syntheses. There are many chiral medications with pharmacodynamic activity in nature that can be synthesized by chiral epoxides. In recent years, researchers have developed a variety of biocatalysts for the asymmetric epoxidation of alkenes, which use oxygen or hydrogen peroxide as eco-friendly and low-cost oxidants, to provide better chemo-, regio- and stereoselectivity under moderate reaction conditions. In this paper, the advances, opportunities and challenges of the asymmetric epoxidation of unactive alkenes by biocatalyst are reviewed.


Subject(s)
Alkenes , Oxidants , Catalysis , Hydrogen Peroxide , Epoxy Compounds , Stereoisomerism
17.
J Org Chem ; 88(1): 371-383, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36563325

ABSTRACT

A cooperative tertiary amine/palladium-catalyzed sequential reaction process, proceeding via a [4 + 3] cyclization of isatin-derived Morita-Baylis-Hillman Expansion (MBH) carbonates and tert-butyl 2-(hydroxymethyl)allyl carbonates followed by a [1,3]-rearrangement, has been found and developed. A range of structurally diverse spiro[methylene cyclopentane-1,3'-oxindolines] bearing two adjacent ß,γ-acyl quaternary carbon stereocenters, which are difficult to obtain by conventional strategies, were obtained in good yields. Further synthetic utility of this protocol is highlighted by its excellent regio- and stereocontrol as well as the large-scale synthesis and diverse functional transformations of the synthetic compounds. Moreover, the control experiments probably established the plausible mechanism for this sequential [4 + 3] cyclization/[1,3]-rearrangement process.


Subject(s)
Carbonates , Palladium , Cyclization , Molecular Structure , Stereoisomerism , Catalysis , Amines
18.
Emerg Microbes Infect ; 12(1): 2147023, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36369697

ABSTRACT

In China, the number of newly reported HIV infections in older people is increasing rapidly. However, clear information on the impact of older people on HIV transmission is limited. This study aims to reveal the local HIV transmission patterns, especially how older people affect virus transmission. Subtype analysis based on available pol sequences obtained from HIV patients revealed that CRF01_AE and CRF08_BC were predominant in patients aged <50 years, whereas CRF01_AE was predominant in older people aged ≥50 years (χ2 = 29.299, P < 0.001). A total of 25 patients (5.2%, 25/484) were identified with recent HIV infection (RHI). Transmission network analysis found 267 genetically linked individuals forming 55 clusters (2-63 individuals), including 5 large transmission clusters and 12 transmission clusters containing RHI. Bayesian phylogenetic analysis suggested that transmission events in CRF01_AE and CRF07_BC were centred on older males, while transmission events in CRF08_BC were centred on younger males. Multivariable logistic regression analysis showed that older people were more likely to cluster within networks (AOR = 2.303, 95% CI: 1.012-5.241) and that RHI was a significant factor associated with high linkage (AOR = 3.468, 95% CI: 1.315-9.146). This study provides molecular evidence that older males play a central role in the local transmission of CRF01_AE and CRF07_BC in Guangxi. Given the current widespread of CRF01_AE and CRF07_BC in Guangxi, there is a need to recommend HIV screening as part of free national medical examinations for older people to improve early detection, timely treatment, and further reduce second-generation transmission.


Subject(s)
HIV Infections , HIV-1 , Humans , Male , Aged , Phylogeny , China/epidemiology , Bayes Theorem , HIV-1/genetics , Genotype
19.
Org Lett ; 24(51): 9392-9397, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36524990

ABSTRACT

Reported herein is a novel palladium-catalyzed [2 + 2 + 1] domino annulation of 3-iodochromones, bridged olefins, and dimethyl squarate allowing the construction of chromone-containing polycyclic compounds in good to high yields. Importantly, dimethyl squarate is first employed as the solid C1 source in organic synthesis. Gram-scale experiments, late-stage modification of natural products, as well as transformations of products show potential for further synthetic elaborations.


Subject(s)
Palladium , Polycyclic Compounds , Chromones , Catalysis , Norbornanes
20.
Angew Chem Int Ed Engl ; 61(52): e202212589, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36328962

ABSTRACT

Expanding the enzymatic toolbox for the green synthesis of valuable molecules is still of high interest in synthetic chemistry and the pharmaceutical industry. Chiral thiiranes are valuable sulfur-containing heterocyclic compounds, but relevant methods for their enantioselective synthesis are limited. Herein, we report a biocatalytic thionation strategy for the enantioselective synthesis of thiiranes, which was developed based on the halohydrin dehalogenase (HHDH)-catalyzed enantioselective ring-opening reaction of epoxides with thiocyanate and a subsequent nonenzymatic rearrangement process. A novel HHDH was identified and engineered for enantioselective biocatalytic thionation of various aryl- and alkyl-substituted epoxides on a preparative scale, affording the corresponding thiiranes in up to 43 % isolated yield and 98 % ee. Large-scale synthesis and useful transformations of chiral thiiranes were also performed to demonstrate the utility and scalability of the biocatalytic thionation strategy.


Subject(s)
Epoxy Compounds , Epoxy Compounds/chemistry , Stereoisomerism , Biocatalysis
SELECTION OF CITATIONS
SEARCH DETAIL