Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Nucleic Acids Res ; 48(10): e57, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32232370

ABSTRACT

Site-specific DNA double-strand breaks have been used to generate knock-in through the homology-dependent or -independent pathway. However, low efficiency and accompanying negative impacts such as undesirable indels or tumorigenic potential remain problematic. In this study, we present an enhanced reduced-risk genome editing strategy we named as NEO, which used either site-specific trans or cis double-nicking facilitated by four bacterial recombination factors (RecOFAR). In comparison to currently available approaches, NEO achieved higher knock-in (KI) germline transmission frequency (improving from zero to up to 10% efficiency with an average of 5-fold improvement for 8 loci) and 'cleaner' knock-in of long DNA fragments (up to 5.5 kb) into a variety of genome regions in zebrafish, mice and rats. Furthermore, NEO yielded up to 50% knock-in in monkey embryos and 20% relative integration efficiency in non-dividing primary human peripheral blood lymphocytes (hPBLCs). Remarkably, both on-target and off-target indels were effectively suppressed by NEO. NEO may also be used to introduce low-risk unrestricted point mutations effectively and precisely. Therefore, by balancing efficiency with safety and quality, the NEO method reported here shows substantial potential and improves the in vivo gene-editing strategies that have recently been developed.


Subject(s)
Bacterial Proteins/metabolism , Gene Editing/methods , Animals , DNA Breaks, Double-Stranded , DNA-Binding Proteins/metabolism , Female , Gene Knock-In Techniques , Genomics , Homologous Recombination , Humans , INDEL Mutation , Macaca fascicularis , Mice , Rats, Sprague-Dawley , Rec A Recombinases/metabolism , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL