Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Med Image Anal ; 94: 103153, 2024 May.
Article in English | MEDLINE | ID: mdl-38569380

ABSTRACT

Monitoring the healing progress of diabetic foot ulcers is a challenging process. Accurate segmentation of foot ulcers can help podiatrists to quantitatively measure the size of wound regions to assist prediction of healing status. The main challenge in this field is the lack of publicly available manual delineation, which can be time consuming and laborious. Recently, methods based on deep learning have shown excellent results in automatic segmentation of medical images, however, they require large-scale datasets for training, and there is limited consensus on which methods perform the best. The 2022 Diabetic Foot Ulcers segmentation challenge was held in conjunction with the 2022 International Conference on Medical Image Computing and Computer Assisted Intervention, which sought to address these issues and stimulate progress in this research domain. A training set of 2000 images exhibiting diabetic foot ulcers was released with corresponding segmentation ground truth masks. Of the 72 (approved) requests from 47 countries, 26 teams used this data to develop fully automated systems to predict the true segmentation masks on a test set of 2000 images, with the corresponding ground truth segmentation masks kept private. Predictions from participating teams were scored and ranked according to their average Dice similarity coefficient of the ground truth masks and prediction masks. The winning team achieved a Dice of 0.7287 for diabetic foot ulcer segmentation. This challenge has now entered a live leaderboard stage where it serves as a challenging benchmark for diabetic foot ulcer segmentation.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Humans , Diabetic Foot/diagnostic imaging , Neural Networks, Computer , Benchmarking , Image Processing, Computer-Assisted/methods
2.
Sensors (Basel) ; 21(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206768

ABSTRACT

This research investigated real-time fingertip detection in frames captured from the increasingly popular wearable device, smart glasses. The egocentric-view fingertip detection and character recognition can be used to create a novel way of inputting texts. We first employed Unity3D to build a synthetic dataset with pointing gestures from the first-person perspective. The obvious benefits of using synthetic data are that they eliminate the need for time-consuming and error-prone manual labeling and they provide a large and high-quality dataset for a wide range of purposes. Following that, a modified Mask Regional Convolutional Neural Network (Mask R-CNN) is proposed, consisting of a region-based CNN for finger detection and a three-layer CNN for fingertip location. The process can be completed in 25 ms per frame for 640×480 RGB images, with an average error of 8.3 pixels. The speed is high enough to enable real-time "air-writing", where users are able to write characters in the air to input texts or commands while wearing smart glasses. The characters can be recognized by a ResNet-based CNN from the fingertip trajectories. Experimental results demonstrate the feasibility of this novel methodology.


Subject(s)
Gestures , Neural Networks, Computer , Humans , Writing
3.
Neurochem Res ; 44(6): 1399-1409, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30603982

ABSTRACT

Prion diseases are transmissible fatal neurodegenerative disorders affecting humans and other mammals. The disease transmission can occur between different species but is limited by the sequence homology between host and inoculum. The crucial molecular event in the progression of this disease is prion formation, starting from the conformational conversion of the normal, membrane-anchored prion protein (PrPC) into the misfolded, ß-sheet-rich and aggregation-prone isoform (PrPSc), which then self-associates into the infectious amyloid form called prion. Amyloid is the aggregate formed from one-dimensional protein association. As amyloid formation is a key hallmark in prion pathogenesis, studying which segments in prion protein are involved in the amyloid formation can provide molecular details in the cross-species transmission barrier of prion diseases. However, due to the difficulties of studying protein aggregates, very limited knowledge about prion structure or prion formation was disclosed by now. In this study, cross-seeding assay was used to identify the segments involved in the amyloid fibril formation of full-length hamster prion protein, SHaPrP(23-231). Our results showed that the residues in the segments 108-127, 172-194 (helix 2 in PrPC) and 200-227 (helix 3 in PrPC) are in the amyloid core of hamster prion fibrils. The segment 127-143, but not 107-126 (which corresponds to hamster sequence 108-127), was previously reported to be involved in the amyloid core of full-length mouse prion fibrils. Our results indicate that hamster prion protein and mouse prion protein use different segments to form the amyloid core in amyloidogenesis. The sequence-dependent core formation can be used to explain the seeding barrier between mouse and hamster.


Subject(s)
Amyloid/metabolism , Peptide Fragments/metabolism , Prion Proteins/metabolism , Animals , Cricetinae , Mice , Protein Multimerization
4.
Int J Mol Sci ; 15(2): 3064-87, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24562332

ABSTRACT

Lysine 5,6-aminomutase (5,6-LAM) and ornithine 4,5-aminomutase (4,5-OAM) are two of the rare enzymes that use assistance of two vitamins as cofactors. These enzymes employ radical generating capability of coenzyme B12 (5'-deoxyadenosylcobalamin, dAdoCbl) and ability of pyridoxal-5'-phosphate (PLP, vitamin B6) to stabilize high-energy intermediates for performing challenging 1,2-amino rearrangements between adjacent carbons. A large-scale domain movement is required for interconversion between the catalytically inactive open form and the catalytically active closed form. In spite of all the similarities, these enzymes differ in substrate specificities. 4,5-OAM is highly specific for D-ornithine as a substrate while 5,6-LAM can accept D-lysine and L-ß-lysine. This review focuses on recent computational, spectroscopic and structural studies of these enzymes and their implications on the related enzymes. Additionally, we also discuss the potential biosynthetic application of 5,6-LAM.


Subject(s)
Cobamides/metabolism , Intramolecular Transferases/metabolism , Pyridoxal Phosphate/metabolism , Binding Sites , Biocatalysis , Cobamides/chemistry , Intramolecular Transferases/chemistry , Intramolecular Transferases/genetics , Molecular Docking Simulation , Protein Structure, Tertiary , Pyridoxal Phosphate/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
5.
J Bacteriol ; 195(20): 4726-34, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23955005

ABSTRACT

Iron is essential for pathogen survival, virulence, and colonization. Feo is suggested to function as the ferrous iron (Fe(2+)) transporter. The enterobacterial Feo system is composed of 3 proteins: FeoB is the indispensable component and is a large membrane protein likely to function as a permease; FeoA is a small Src homology 3 (SH3) domain protein that interacts with FeoB; FeoC is a winged-helix protein containing 4 conserved Cys residues in a sequence suitable for harboring a putative iron-sulfur (Fe-S) cluster. The presence of an iron-sulfur cluster on FeoC has never been shown experimentally. We report that under anaerobic conditions, the recombinant Klebsiella pneumoniae FeoC (KpFeoC) exhibited hyperfine-shifted nuclear magnetic resonance (NMR) and a UV-visible (UV-Vis) absorbance spectrum characteristic of a paramagnetic center. The electron paramagnetic resonance (EPR) and extended X-ray absorption fine structure (EXAFS) results were consistent only with the [4Fe-4S] clusters. Substituting the cysteinyl sulfur with oxygen resulted in significantly reduced cluster stability, establishing the roles of these cysteines as the ligands for the Fe-S cluster. When exposed to oxygen, the [4Fe-4S] cluster degraded to [3Fe-4S] and eventually disappeared. We propose that KpFeoC may regulate the function of the Feo transporter through the oxygen- or iron-sensitive coordination of the Fe-S cluster.


Subject(s)
Bacterial Proteins/metabolism , Iron-Sulfur Proteins/metabolism , Klebsiella pneumoniae/metabolism , Absorptiometry, Photon , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/physiology , Iron-Sulfur Proteins/classification , Iron-Sulfur Proteins/genetics , Klebsiella pneumoniae/genetics , Magnetic Resonance Spectroscopy , Oxidation-Reduction
6.
Biochim Biophys Acta ; 1827(4): 507-19, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23399490

ABSTRACT

We performed spectroscopic and functional characterization on cyanobacterium Synechocystis PCC6803 with mutations of charged residues of the cytoplasmic side of cytochrome (Cyt) b559 in photosystem II (PSII). All of the mutant cells grew photoautotrophically and assembled stable PSII. However, R7Eα, R17Eα and R17Lß mutant cells grew significantly slower and were more susceptible to photoinhibition than wild-type cells. The adverse effects of the arginine mutations on the activity and the stability of PSII were in the following order (R17Lß>R7Eα>R17Eα and R17Aα). All these arginine mutants exhibited normal period-four oscillation in oxygen yield. Thermoluminescence characteristics indicated a slight decrease in the stability of the S3QB(-)/S2QB(-) charge pairs in the R7Eα and R17Lß mutant cells. R7Eα and R17Lß PSII core complexes contained predominantly the low potential form of Cyt b559. EPR results indicated the displacement of one of the two axial ligands to the heme of Cyt b559 in R7Eα and R17Lß mutant reaction centers. Our results demonstrate that the electrostatic interactions between these arginine residues and the heme propionates of Cyt b559 are important to the structure and redox properties of Cyt b559. In addition, the blue light-induced nonphotochemical quenching was significantly attenuated and its recovery was accelerated in the R7Lα and R17Lß mutant cells. Furthermore, ultra performance liquid chromatography-mass spectrometry results showed that the PQ pool was more reduced in the R7Eα and R17Lß mutant cells than wild-type cells in the dark. Our data support a functional role of Cyt b559 in protection of PSII under photoinhibition conditions in vivo.


Subject(s)
Cytochrome b Group/chemistry , Cytosol/metabolism , Oxygen/metabolism , Photosystem II Protein Complex/chemistry , Synechocystis/genetics , Chlorophyll/metabolism , Chlorophyll A , Chromatography, Liquid , Cytochrome b Group/genetics , Cytochrome b Group/metabolism , Electron Spin Resonance Spectroscopy , Fluorescence , Light , Mutation/genetics , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Synechocystis/metabolism
7.
J Am Chem Soc ; 135(2): 788-94, 2013 Jan 16.
Article in English | MEDLINE | ID: mdl-23231091

ABSTRACT

An "open"-state crystal structure of lysine 5,6-aminomutase suggests that transition to a hypothetical "closed"-state is required to bring the cofactors adenosylcobalamin (AdoCbl) and pyridoxal-5'-phosphate (PLP) and the substrate into proximity for the radical-mediated 1,2-amino group migration. This process is achieved by transaldimination of the PLP-Lys144ß internal aldimine with the PLP-substrate external aldimine. A closed-state crystal structure is not available. UV-vis and electron paramagnetic resonance studies show that homologues of substrate D-lysine, 2,5-DAPn, 2,4-DAB, and 2,3-DAPr bind to PLP as an external aldimine and elicit the AdoCbl Co-C bond homolysis and the accumulations of cob(II)alamin and analogue-based radicals, demonstrating the existence of a closed state. (2)H- and (31)P-electron nuclear double resonance studies, supported by computations, show that the position for hydrogen atom abstraction from 2,5-DAPn and 2,4-DAB by the 5'-deoxyadenosyl radical occurs at the carbon adjacent to the imine, resulting in overstabilized radicals by spin delocalization through the imine into the pyridine ring of PLP. These radicals block the active site, inhibit the enzyme, and poise the enzyme into two distinct conformations: for even-numbered analogues, the cob(II)alamin remains proximal to and spin-coupled with the analogue-based radical in the closed state while odd-numbered analogues could trigger the transition to the open state of the enzyme. We provide here direct spectroscopic evidence that strongly support the existence of a closed state and its analogue-dependent transition to the open state, which is one step that was proposed to complete the catalytic turnover of the substrate lysine.


Subject(s)
Intramolecular Transferases/chemistry , Quantum Theory , Vitamin B 12/analogs & derivatives , Catalytic Domain , Electron Spin Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Vitamin B 12/chemistry
8.
J Am Chem Soc ; 133(43): 17152-5, 2011 Nov 02.
Article in English | MEDLINE | ID: mdl-21939264

ABSTRACT

Adenosylcobalamin- and pyridoxal-5'-phosphate-dependent lysine 5,6-aminomutase utilizes free radical intermediates to mediate 1,2-amino group rearrangement, during which an elusive high-energy aziridincarbinyl radical is proposed to be central in the mechanism of action. Understanding how the enzyme participates in stabilizing any of the radical intermediates is fundamentally significant. Y263F mutation abolished the enzymatic activity. With isotope-edited EPR methods, the roles of the Tyr263α residue in the putative active site are revealed. The Tyr263α residue stabilizes a radical intermediate, which most likely is the aziridincarbinyl radical, either by acting as a spin-relay device or serving as an anchor for the pyridine ring of pyridoxal-5'-phosphate through aromatic π-stacking interactions during spin transfer. The Tyr263α residue also protects the radical intermediate from interception by molecular oxygen. This study supports the proposed reaction mechanism, including the aziridincarbinyl radical, which has eluded detection for more than two decades.


Subject(s)
Intramolecular Transferases/metabolism , Tyrosine/metabolism , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Free Radicals/chemistry , Free Radicals/metabolism , Intramolecular Transferases/chemistry , Models, Molecular , Molecular Structure , Stereoisomerism , Tyrosine/chemistry
9.
Plant Physiol Biochem ; 49(11): 1369-76, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21821424

ABSTRACT

The assimilatory nitrate reductase (NarB) of N(2)-fixing cyanobacterium Cyanothece sp. PCC 8801 is a monomeric enzyme with dual affinity for substrate nitrate. We purified the recombinant NarB of Cyanothece sp. PCC 8801 and further investigated it by enzyme kinetics analysis, site-directed mutagenesis, inhibitor kinetics analysis, and electron paramagnetic resonance (EPR) spectroscopy. The NarB showed 2 kinetic regimes at pH 10.5 or 8 and electron-donor conditions methyl viologen or ferredoxin (Fd). Fd-dependent NR assay revealed NarB with very high affinity for nitrate (K(m)1, ∼1µM; K(m)2, âˆ¼270µM). Metal analysis and EPR results showed that NarB contains a Mo cofactor and a [4Fe-4S] cluster. In addition, the R352A mutation on the proposed nitrate-binding site of NarB greatly altered both high- and low-affinity kinetic components. Furthermore, the effect of azide on the NarB of Cyanothece sp. PCC 8801 was more complex than that on the NarB of Synechococcus sp. PCC 7942 with its single kinetic regime. With 1mM azide, the kinetics of the wild-type NarB was transformed from 2 kinetic regimes to hyperbolic kinetics, and its activity was enhanced significantly under medium nitrate concentrations. Moreover, EPR results also suggested a structural difference between the two NarBs. Taken together, our results show that the NarB of Cyanothece sp. PCC 8801 contains only a single Mo-catalytic center, and we rule out that the enzyme has 2 independent, distinct catalytic sites. In addition, the NarB of Cyanothece sp. PCC 8801 may have a regulatory nitrate-binding site.


Subject(s)
Catalytic Domain , Cyanothece/enzymology , Nitrate Reductase/metabolism , Nitrates/metabolism , Amino Acid Sequence , Azides/pharmacology , Bacterial Proteins/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Binding Sites , Biocatalysis , Coenzymes , Cyanothece/genetics , Cyanothece/metabolism , Electron Spin Resonance Spectroscopy , Enzyme Inhibitors/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Ferredoxins/metabolism , Gene Expression , Hydrogen-Ion Concentration , Kinetics , Mutagenesis, Site-Directed , Mutation , Nitrate Reductase/drug effects , Nitrate Reductase/genetics , Nitrate Reductase/isolation & purification , Nitrogen Fixation , Oxidation-Reduction , Paraquat/metabolism , Recombinant Proteins , Sequence Analysis, DNA
10.
Int J Alzheimers Dis ; 2011: 607861, 2010 Dec 30.
Article in English | MEDLINE | ID: mdl-21234305

ABSTRACT

The neurotoxicity of Aß is associated with the formation of free radical by interacting with redox active metals such as Cu(2+). However, the relationship between ion-interaction, ion-driven free radical formation, and Aß conformation remains to be further elucidated. In the present study, we investigated the correlation of Cu(2+) interaction and Cu(2+)-driven free radical formation with Aß40 conformation. The Cu(2+)-binding affinity for Aß40 in random coiled form is 3-fold higher than that in stable helical form. Unexpectedly but interestingly, we demonstrate in the first time that the stable helical form of Aß40 can induce the formation of H(2)O(2) by interacting with Cu(2+). On the other hand, the H(2)O(2) generation is repressed at Aß/Cu(2+) molar ratio ≥1 when Aß40 adopts random coiled structure. Taken together, our result demonstrates that Aß40 adopted a helical structure that may play a key factor for the formation of free radical with Cu(2+) ions.

11.
J Biol Chem ; 285(8): 5653-63, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-20007972

ABSTRACT

The functional role of cytochrome (cyt) b(559) in photosystem II (PSII) was investigated in H22K alpha and Y18S alpha cyt b(559) mutants of the cyanobacterium Synechocystis sp. PCC6803. H22K alpha and Y18S alpha cyt b(559) mutant carries one amino acid substitution on and near one of heme axial ligands of cyt b(559) in PSII, respectively. Both mutants grew photoautotrophically, assembled stable PSII, and exhibited the normal period-four oscillation in oxygen yield. However, both mutants showed several distinct chlorophyll a fluorescence properties and were more susceptible to photoinhibition than wild type. EPR results indicated the displacement of one of the two axial ligands to the heme of cyt b(559) in H22K alpha mutant reaction centers, at least in isolated reaction centers. The maximum absorption of cyt b(559) in Y18S alpha mutant PSII core complexes was shifted to 561 nm. Y18S alpha and H22K alpha mutant PSII core complexes contained predominately the low potential form of cyt b(559). The findings lend support to the concept that the redox properties of cyt b(559) are strongly influenced by the hydrophobicity and ligation environment of the heme. When the cyt b(559) mutations placed in a D1-D170A genetic background that prevents assembly of the manganese cluster, accumulation of PSII is almost completely abolished. Overall, our data support a functional role of cyt b(559) in protection of PSII under photoinhibition conditions in vivo.


Subject(s)
Amino Acid Substitution , Bacterial Proteins/metabolism , Cytochrome b Group/metabolism , Heme/metabolism , Mutation, Missense , Photosystem II Protein Complex/metabolism , Synechocystis/enzymology , Bacterial Proteins/genetics , Catalytic Domain/physiology , Chlorophyll/genetics , Chlorophyll/metabolism , Chlorophyll A , Cytochrome b Group/genetics , Heme/genetics , Hydrophobic and Hydrophilic Interactions , Photosynthesis/physiology , Photosystem II Protein Complex/genetics , Spectrometry, Fluorescence/methods , Synechocystis/genetics
12.
J Phys Chem B ; 113(36): 12161-3, 2009 Sep 10.
Article in English | MEDLINE | ID: mdl-19685884

ABSTRACT

We demonstrate that the steady state reaction of lysine 5,6-aminomutase with substrate analogue 4-thia-l-lysine generates a radical intermediate, which accumulates in the enzyme to an electron paramagnetic resonance (EPR) detectable level. EPR line width narrowing of approximately 1 mT due to [4'-(2)H] labeling of the pyridoxal-5'-phosphate (PLP), an isotropic hyperfine coupling of 40 MHz for the proton at C4' of PLP derived from (2)H electron nuclear double resonance (ENDOR) measurement, and spin density delocalization onto the (31)P of PLP realized from observations of the (31)P ENDOR signal provide unequivocal identification of the radical as a substrate-PLP-based species. X- and Q-band EPR spectra fittings demonstrate that this radical is spin coupled with the low spin Co(2+) in cob (II) alamin and the distance between the two species is about 10 A. These results provide direct evidence for the active site motion upon substrate binding, bringing the adenosylcobalamin to the proximity of substrate-PLP for subsequent H-atom abstraction and for the notion that lysine 5,6-aminomutase functions by a radical mechanism. Observation of (2)H-ENDOR signal also provides a reliable hyperfine coupling constant for future comparison with quantum-mechanical-based calculations to gain further insight into the molecular structure of this steady state radical intermediate.


Subject(s)
Cysteine/analogs & derivatives , Intramolecular Transferases/chemistry , Cysteine/chemistry , Free Radicals , Molecular Conformation , Molecular Structure , Protein Synthesis Inhibitors/chemistry
13.
Biochim Biophys Acta ; 1787(10): 1179-88, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19464256

ABSTRACT

We identified a spontaneously generated mutant from Synechocystis sp. PCC6803 wild-type cells grown in BG-11 agar plates containing 5 mM Glu and 10 microM DCMU. This mutant carries an R7L mutation on the alpha-subunit of cyt b559 in photosystem II (PSII). In the recent 2.9 A PSII crystal structural model, the side chain of this arginine residue is in close contact with the heme propionates of cyt b559. We called this mutant WR7Lalpha cyt b559. This mutant grew at about the same rate as wild-type cells under photoautotrophical conditions but grew faster than wild-type cells under photoheterotrophical conditions. In addition, 77 K fluorescence and 295 K chlorophyll a fluorescence spectral results indicated that the energy delivery from phycobilisomes to PSII reaction centers was partially inhibited or uncoupled in this mutant. Moreover, WR7Lalpha cyt b559 mutant cells were more susceptible to photoinhibition than wild-type cells under high light conditions. Furthermore, our EPR results indicated that in a significant fraction of mutant reaction centers, the R7Lalpha cyt b559 mutation induced the displacement of one of the axial histidine ligands to the heme of cyt b559. On the basis of these results, we propose that the Arg7Leu mutation on the alpha-subunit of cyt b559 alters the interaction between the APC core complex and PSII reaction centers, which reduces energy delivery from the antenna to the reaction center and thus protects mutant cells from DCMU-induced photo-oxidative stress.


Subject(s)
Cytochrome b Group/metabolism , Diuron/pharmacology , Heterotrophic Processes/drug effects , Heterotrophic Processes/radiation effects , Mutation/genetics , Photosystem II Protein Complex/metabolism , Synechocystis/growth & development , Ultraviolet Rays , Absorption/drug effects , Chlorophyll/metabolism , Chlorophyll A , Electron Spin Resonance Spectroscopy , Electrons , Heme/metabolism , Kinetics , Oxidation-Reduction/drug effects , Oxygen/metabolism , Spectrometry, Fluorescence , Synechocystis/cytology , Synechocystis/drug effects , Synechocystis/radiation effects , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...