Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
1.
Adv Mater ; : e2401750, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38961531

ABSTRACT

Nanomaterial advancements have driven progress in central and peripheral nervous system applications such as tissue regeneration and brain-machine interfacing. Ideally, neural interfaces with native tissue shall seamlessly integrate, a process that is often mediated by the interfacial material properties. Surface topography and material chemistry are significant extracellular stimuli that can influence neural cell behavior to facilitate tissue integration and augment therapeutic outcomes. This review characterizes topographical modifications, including micropillars, microchannels, surface roughness, and porosity, implemented on regenerative scaffolding and brain-machine interfaces. Their impact on neural cell response is summarized through neurogenic outcome and mechanistic analysis. The effects of surface chemistry on neural cell signaling with common interfacing compounds like carbon-based nanomaterials, conductive polymers, and biologically inspired matrices are also reviewed. Finally, the impact of these extracellular mediated neural cues on intracellular signaling cascades is discussed to provide perspective on the manipulation of neuron and neuroglia cell microenvironments to drive therapeutic outcomes.

2.
Angew Chem Int Ed Engl ; : e202409283, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962888

ABSTRACT

Achieving electronic/steric control and realizing selectivity regulation in nanocatalysis remains a formidable challenge, as the dynamic nature of metal-ligand interfaces, including dissolution (metal leaching) and structural reconstruction, poses significant obstacles. Herein, we disclose carboranyls (CBs) as unprecedented carbon-bonded functional ligands (Eads.CB-Au(111) = -2.90 eV) for gold nanoparticles (AuNPs), showcasing their exceptional stabilization capability that is attributed by strong Au-C bonds combined with B-H⋯Au interactions. The synthesized CB@AuNPs exhibit core(Aun)-satellite(CB2Au-) structure, showing high stability towards multiple stimuli (110oC, pH = 1-12, thiol etchants). In addition, different from conventional AuNP catalysts such as triphenylphosphine (PPh3) stabilized AuNPs, dissolution of catalytically active gold species was suppressed in CB@AuNPs under the reaction conditions. Leveraging these distinct features, CB@AuNPs realized outstanding p:o selectivities in aromatic bromination. Unbiased arenes including chlorobenzene (up to > 30:1), bromobenzene (15:1) and phenyl acrylate were examined using CB@AuNPs as catalysts to afford highly-selective p-products. Both carboranyl ligands and carboranyl derived counterions are crucial for such regioselective transformation. This work has provided valuable insights for AuNPs in realizing diverse regioselective transformations.

3.
Small ; : e2403629, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958098

ABSTRACT

Natural organisms have evolved precise sensing systems relying on unique ion channels, which can efficiently perceive various physical/chemical stimuli based on ionic signal transmission in biological fluid environments. However, it is still a huge challenge to achieve extensive applications of the artificial counterparts as an efficient wet sensing platform due to the fluidity of the working medium. Herein, nanofluidic membranes with selective cation transport properties and solid-state organic electrochemical transistors (OECTs) with amplified signals are integrated together to mimic human gustatory sensation, achieving ionic gustatory reagent recognition and a portable configuration. Cu-HHTP nanofluidic membranes with selective cation transport through their uniform micropores are constructed first, followed by assembly with OECTs to form the designed nanofluidic membrane-assisted OECTs (nanofluidic OECTs). As a result, they can distinguish typically ionic gustatory reagents, and even ionic liquids (ILs), demonstrating enhanced gustatory perception performance under a wide concentration range (10-7-10-1 m) compared with those of conventional OECTs. The linear correlations between the response and the reagent concentration further indicate the promising potential for practical application as a next-generation sensing platform. It is suggested that nanofluidic membranes mediated intramembrane cation transport based on the steric hindrance effect, resulting in distinguishable and improved response to multiple ions.

4.
iScience ; 27(7): 110188, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38989468

ABSTRACT

Hypoxia promotes tumorigenesis and lactate accumulation in esophageal squamous cell carcinoma (ESCC). Lactate can induce histone lysine lactylation (Kla, a recently identified histone marks) to regulate transcription. However, the functional consequence of histone Kla under hypoxia in ESCC remains to be explored. Here, we reveal that hypoxia facilitates histone H3K9la to enhance LAMC2 transcription for proliferation of ESCC. We found that global level of Kla was elevated under hypoxia, and thus identified the landscape of histone Kla in ESCC by quantitative proteomics. Furthermore, we show a significant increase of H3K9la level induced by hypoxia. Next, MNase ChIP-seq and RNA-seq analysis suggest that H3K9la is enriched at the promoter of cell junction genes. Finally, we demonstrate that the histone H3K9la facilitates the expression of LAMC2 for ESCC invasion by in vivo and in vitro experiments. Briefly, our study reveals a vital role of histone Kla triggered by hypoxia in cancer.

5.
ChemSusChem ; : e202400830, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850522

ABSTRACT

Magnetite (Fe3O4) has a large theoretical reversible capacity and rich Earth abundance, making it a promising anode material for LIBs. However, it suffers from drastic volume changes during the lithiation process, which lead to poor cycle stability and low-rate performance. Hence, there is an urgent need for a solution to address the issue of volume expansion. Taking inspiration from how glycophyte cells mitigate excessive water uptake/loss through their cell wall to preserve the structural integrity of cells, we designed Fe3O4@PMMA multi-core capsules by microemulsion polymerization as a kind of anode materials, also proposed a new evaluation method for real-time repair effect of the battery capacity. The Fe3O4@PMMA anode shows a high reversible specific capacity (858.0 mAh g-1 at 0.1 C after 300 cycles) and an excellent cycle stability (450.99 mAh g-1 at 0.5 C after 450 cycles). Furthermore, the LiNi0.8Co0.1Mn0.1O2/Fe3O4@PMMA 200 mAh pouch cells exhibit a stable capacity (200.6 mAh) and high-capacity retention rate (95.5%) after 450 cycles at 0.5 C. Compared to the original battery, the capacity repair rate of this battery is as high as 93.4%. This kind of bionic capsules provide an innovative solution for improving the electrochemical performance of Fe3O4 anodes to promote their industrial applications.

6.
Opt Express ; 32(10): 17433-17451, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858927

ABSTRACT

Cavity optomechanical systems are considered as one of the best platforms for studying macroscopic quantum phenomena. In this paper, we studied the effect of laser phase noise on the steady-state entanglement between a cavity mode and a rotating mirror in a Laguerre-Gaussian (L-G) optorotational system. We found that the effect of laser phase noise was non-negligible on the field-mirror entanglement especially at a larger input power and a larger angular momentum. We also investigated the influence of laser phase noise on the ground-state cooling of the rotating mirror. In the presence of laser phase noise, the ground-state cooling of the rotating mirror can still be realized within a range of input powers.

7.
Small ; : e2311379, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829150

ABSTRACT

2D semiconductor heterostructures exhibit broad application prospects. However, regular nanochannels of heterostructures rarely caught the researcher's attention. Herein, a metal-organic framework (i.e., Cu3(HHTP)2) and transition metal dichalcogenides (i.e., MoS2)-based multilayer van der Waals heterostructure (i.e., Cu3(HHTP)2/MoS2) realized band alignment-dominated light-driven ion transport and further light-enhanced ionic energy generation. High-density channels of the heterostructure provide high-speed pathways for ion transmembrane transport. Upon light illumination, a net ionic flow occurs at a symmetric concentration, suggesting a directional cationic transport from Cu3(HHTP)2 to MoS2. This is because Cu3(HHTP)2/MoS2 heterostructures containing type-II band alignment can generate photovoltaic motive force through light-induced efficient charge separation to drive ion transport. After introducing into the ionic power generation system, the maximum power density under illumination can achieve notable improvement under different concentration differences. In addition to the photovoltaic motive force, type-II band alignment and material defect capture-induced surface charge increase also raise ion selectivity and flux, greatly facilitating ionic energy generation. This work demonstrates that 2D semiconductor heterostructures with rational band alignment can not only be a potential platform for optimizing light-enhanced ionic energy harvesting but also provide a new thought for biomimetic iontronic devices.

8.
Article in English | MEDLINE | ID: mdl-38915901

ABSTRACT

Tissue chips have become one of the most potent research tools in the biomedical field. In contrast to conventional research methods, such as 2D cell culture and animal models, tissue chips more directly represent human physiological systems. This allows researchers to study therapeutic outcomes to a high degree of similarity to actual human subjects. Additionally, as rocket technology has advanced and become more accessible, researchers are using the unique properties offered by microgravity to meet specific challenges of modeling tissues on Earth; these include large organoids with sophisticated structures and models to better study aging and disease. This perspective explores the manufacturing and research applications of microgravity tissue chip technology, specifically investigating the musculoskeletal, cardiovascular, and nervous systems.

9.
Mater Horiz ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938180

ABSTRACT

Natural organisms have evolved multi-scale wet gas sensing interfaces with optimized mass transport pathways in biological fluid environments, which sheds light on developing artificial counterparts with improved wet gas sensing abilities and practical applications. Herein, we highlighted current advances in wet gas sensing taking advantage of optimized mass transport pathways endowed by multi-scale interface design. Common moisture resistance (e.g., employing moisture resistant sensing materials, post-modifying moisture resistant coatings, physical heating for moisture resistance, and self-removing hydroxyl groups) and moisture absorption (e.g., employing moisture absorption sensing materials and post-modifying moisture absorption coatings) strategies for wet gas sensing were discussed. Then, the design principles of bioinspired multi-scale wet gas sensing interfaces were provided, including macro-level condensation mediation, micro/nano-level transport pathway adjustment and molecular level moisture-proof design. Finally, perspectives on constructing bioinspired multi-scale wet gas sensing interfaces were presented, which will not only deepen our understanding of the underlying principles, but also promote practical applications.

10.
Nucl Acid Insights ; 1(2): 101-113, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38903876

ABSTRACT

mRNA therapeutics have garnered significant attention in the biomedical realm, showing immense potential across a spectrum of applications from COVID-19 to cancer treatments. Their ability to trigger precise protein expression, particularly in genome editing, is pivotal in minimizing off-target effects. At the core of mRNA therapy lies a dual-component system, comprising the mRNA itself and a delivery vehicle. The breakthrough success of novel COVID-19 vaccines has catapulted lipid nanoparticles to prominence as the preferred delivery vehicle. However, despite their US FDA approval and efficacy, lipid nanoparticles face a significant challenge: poor stability at room temperature, which limits their applications in various geographic regions with disparities in infrastructure and technology. This review aims to dissect the issue of stability inherent in lipid nanoparticles and other mRNA delivery platforms such as polymer-based materials and protein derivative materials. We herein endeavor to unravel the factors contributing to their instability and explore potential strategies to enhance their stability. By doing so, we provide a comprehensive analysis of the current landscape of mRNA delivery systems, highlighting both their successes and limitations, and paving the way for future advancements in this rapidly evolving field.

11.
Adv Sci (Weinh) ; : e2402477, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874373

ABSTRACT

Chondrocyte senescence and reduced lubrication play pivotal roles in the pathogenesis of age-related osteoarthritis (OA). In the present study, highly lubricated and drug-loaded hydrogel microspheres are designed and fabricated through the radical polymerization of sulfobetaine (SB)-modified hyaluronic acid methacrylate using microfluidic technology. The copolymer contains a large number of SB and carboxyl groups that can provide a high degree of lubrication through hydration and form electrostatic loading interactions with metformin (Met@SBHA), producing a high drug load for anti-chondrocyte senescence. Mechanical, tribological, and drug release analyses demonstrated enhanced lubricative properties and prolonged drug dissemination of the Met@SBHA microspheres. RNA sequencing (RNA-seq) analysis, network pharmacology, and in vitro assays revealed the extraordinary capacity of Met@SBHA to combat chondrocyte senescence. Additionally, inducible nitric oxide synthase (iNOS) has been identified as a promising protein modulated by Met in senescent chondrocytes, thereby exerting a significant influence on the iNOS/ONOO-/P53 pathway. Notably, the intra-articular administration of Met@SBHA in aged mice ameliorated cartilage senescence and OA pathogenesis. Based on the findings of this study, Met@SBHA emerges as an innovative and promising strategy in tackling age-related OA serving the dual function of enhancing joint lubrication and mitigating cartilage senescence.

12.
Front Digit Health ; 6: 1334058, 2024.
Article in English | MEDLINE | ID: mdl-38711677

ABSTRACT

A growing body of research has focused on the utility of adaptive intervention models for promoting long-term weight loss maintenance; however, evaluation of these interventions often requires customized smartphone applications. Building such an app from scratch can be resource-intensive. To support a novel clinical trial of an adaptive intervention for weight loss maintenance, we developed a companion app, MyTrack+, to pair with a main commercial app, FatSecret (FS), leveraging a user-centered design process for rapid prototyping and reducing software engineering efforts. MyTrack+ seamlessly integrates data from FS and the BodyTrace smart scale, enabling participants to log and self-monitor their health data, while also incorporating customized questionnaires and timestamps to enhance data collection for the trial. We iteratively refined the app by first developing initial mockups and incorporating feedback from a usability study with 17 university students. We further improved the app based on an in-the-wild pilot study with 33 participants in the target population, emphasizing acceptance, simplicity, customization options, and dual app usage. Our work highlights the potential of using an iterative human-centered design process to build a companion app that complements a commercial app for rapid prototyping, reducing costs, and enabling efficient research progress.

13.
Front Immunol ; 15: 1393392, 2024.
Article in English | MEDLINE | ID: mdl-38774880

ABSTRACT

This review provides a comprehensive analysis of the critical role played by macrophages and their underlying mechanisms in the progression of diabetic cardiomyopathy (DCM). It begins by discussing the origins and diverse subtypes of macrophages, elucidating their spatial distribution and modes of intercellular communication, thereby emphasizing their significance in the pathogenesis of DCM. The review then delves into the intricate relationship between macrophages and the onset of DCM, particularly focusing on the epigenetic regulatory mechanisms employed by macrophages in the context of DCM condition. Additionally, the review discusses various therapeutic strategies aimed at targeting macrophages to manage DCM. It specifically highlights the potential of natural food components in alleviating diabetic microvascular complications and examines the modulatory effects of existing hypoglycemic drugs on macrophage activity. These findings, summarized in this review, not only provide fresh insights into the role of macrophages in diabetic microvascular complications but also offer valuable guidance for future therapeutic research and interventions in this field.


Subject(s)
Diabetic Cardiomyopathies , Macrophages , Animals , Humans , Diabetic Cardiomyopathies/immunology , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/pathology , Hypoglycemic Agents/therapeutic use , Macrophages/immunology , Macrophages/metabolism
14.
Lancet Reg Health Eur ; 42: 100934, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38800112

ABSTRACT

Background: Limited knowledge exists regarding behavioral and biomarker shifts during the period from respiratory infection exposure to testing decisions (the diagnostic decision period), a key phase affecting transmission dynamics and public health strategy development. This study aims to examine the changes in behavior and biomarkers during the diagnostic decision period for COVID-19, influenza, and group A streptococcus (GAS). Methods: We analyzed data from a two-year prospective cohort study involving 4795 participants in Israel, incorporating smartwatch data, self-reported symptoms, and medical records. Our analysis focused on three critical phases: the digital incubation period (from exposure to physiological anomalies detected by smartwatches), the symptomatic incubation period (from exposure to onset of symptoms), and the diagnostic decision period for influenza, COVID-19, and GAS. Findings: The delay between initial symptom reporting and testing was 39 [95% confidence interval (CI): 34-45] hours for influenza, 53 [95% CI: 49-58] hours for COVID-19, and 38 [95% CI: 32-46] hours for GAS, with 73 [95% CI: 67-78] hours from anomalies in heart measures to symptom onset for influenza, 23 [95% CI: 18-27] hours for COVID-19, and 62 [95% CI: 54-68] hours for GAS. Analyzing the entire course of infection of each individual, the greatest changes in heart rates were detected 67.6 [95% CI: 62.8-72.5] hours prior to testing for influenza, 64.1 [95% CI: 61.4-66.7] hours prior for COVID-19, and 58.2 [95% CI: 52.1-64.2] hours prior for GAS. In contrast, the greatest reduction in physical activities and social contacts occurred after testing. Interpretation: These findings highlight the delayed response of patients in seeking medical attention and reducing social contacts and demonstrate the transformative potential of smartwatches for identifying infection and enabling timely public health interventions. Funding: This work was supported by the European Research Council, project #949850, the Israel Science Foundation (ISF), grant No. 3409/19, within the Israel Precision Medicine Partnership program, and a Koret Foundation gift for Smart Cities and Digital Living.

15.
Org Lett ; 26(20): 4218-4223, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38747898

ABSTRACT

Enamides and their derivatives are prominent bioactive pharmacophores found in various bioactive molecules. Herein we report a palladium-catalyzed oxidative N-α,ß-dehydrogenation of amides to produce a range of enamides with high yields and excellent tolerance toward different functional groups. Mechanistic studies indicate that the reaction involves allylic C(sp3)-H activation followed by ß-H elimination. The effectiveness of this approach is demonstrated through late-stage functionalization of bioactive molecules and the synthesis of valuable compounds through product elaboration.

16.
Adv Sci (Weinh) ; : e2400405, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682479

ABSTRACT

Lithium-ion batteries (LIBs) are currently the predominant energy storage power source. However, the urgent issues of enhancing electrochemical performance, prolonging lifetime, preventing thermal runaway-caused fires, and intelligent application are obstacles to their applications. Herein, bio-inspired electrodes owning spatiotemporal management of self-healing, fast ion transport, fire-extinguishing, thermoresponsive switching, recycling, and flexibility are overviewed comprehensively, showing great promising potentials in practical application due to the significantly enhanced durability and thermal safety of LIBs. Taking advantage of the self-healing core-shell structures, binders, capsules, or liquid metal alloys, these electrodes can maintain the mechanical integrity during the lithiation-delithiation cycling. After the incorporation of fire-extinguishing binders, current collectors, or capsules, flame retardants can be released spatiotemporally during thermal runaway to ensure safety. Thermoresponsive switching electrodes are also constructed though adding thermally responsive components, which can rapidly switch LIB off under abnormal conditions and resume their functions quickly when normal operating conditions return. Finally, the challenges of bio-inspired electrode designs are presented to optimize the spatiotemporal management of LIBs. It is anticipated that the proposed electrodes with spatiotemporal management will not only promote industrial application, but also strengthen the fundamental research of bionics in energy storage.

17.
J Colloid Interface Sci ; 666: 57-65, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38583210

ABSTRACT

Modification of oxygen evolution co-catalyst (OEC) on the surface of bismuth vanadate (BiVO4) can effectively improve the kinetics of water oxidation, but it is still limited by the small hole extraction driving force at the BiVO4/OEC interface. Modulating the BiVO4/OEC interface with a hole transfer layer (HTL) is expected to facilitate hole transport from BiVO4 to the OEC surface. Herein, a copper(I) thiocyanate (CuSCN) HTL is inserted between BiVO4 and NiFeOx OEC to create BiVO4/CuSCN/NiFeOx photoanode, resulting in a significant enhancement of photoelectrochemical (PEC) water splitting performance. From electrochemical analyses and density functional theory (DFT) simulations, the markedly enhanced PEC performance is attributed to the insertion of CuSCN as an HTL, which promotes the extraction of holes from BiVO4 surface and boosts the water oxidation kinetics. The optimal photoanode achieves a photocurrent density of 5.6 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (vs. RHE) and an impressive charge separation efficiency of 96.2 %. This work offers valuable insights into the development of advanced photoanodes for solar energy conversion and emphasizes the importance of selecting an appropriate HTL to mitigate recombination at the BiVO4/OEC interface.

18.
PLoS One ; 19(4): e0300022, 2024.
Article in English | MEDLINE | ID: mdl-38573982

ABSTRACT

BACKGROUND: Inflammation is the common pathogenesis of coronary atherosclerosis disease (CAD) and rheumatoid arthritis (RA). Although it is established that RA increases the risk of CAD, the underlining mechanism remained indefinite. This study seeks to explore the molecular mechanisms of RA linked CAD and identify potential target gene for early prediction of CAD in RA patients. MATERIALS AND METHODS: The study utilized five raw datasets: GSE55235, GSE55457, GSE12021 for RA patients, and GSE42148 and GSE20680 for CAD patients. Gene Set Enrichment Analysis (GSEA) was used to investigate common signaling pathways associated with RA and CAD. Then, weighted gene co-expression network analysis (WGCNA) was performed on RA and CAD training datasets to identify gene modules related to single-sample GSEA (ssGSEA) scores. Overlapping module genes and differentially expressed genes (DEGs) were considered as co-susceptible genes for both diseases. Three hub genes were screened using a protein-protein interaction (PPI) network analysis via Cytoscape plug-ins. The signaling pathways, immune infiltration, and transcription factors associated with these hub genes were analyzed to explore the underlying mechanism connecting both diseases. Immunohistochemistry and qRT-PCR were conducted to validate the expression of the key candidate gene, PPARG, in macrophages of synovial tissue and arterial walls from RA and CAD patients. RESULTS: The study found that Fc-gamma receptor-mediated endocytosis is a common signaling pathway for both RA and CAD. A total of 25 genes were screened by WGCNA and DEGs, which are involved in inflammation-related ligand-receptor interactions, cytoskeleton, and endocytosis signaling pathways. The principal component analysis(PCA) and support vector machine (SVM) and receiver-operator characteristic (ROC) analysis demonstrate that 25 DEGs can effectively distinguish RA and CAD groups from normal groups. Three hub genes TUBB2A, FKBP5, and PPARG were further identified by the Cytoscape software. Both FKBP5 and PPARG were downregulated in synovial tissue of RA and upregulated in the peripheral blood of CAD patients and differential mRNAexpreesion between normal and disease groups in both diseases were validated by qRT-PCR.Association of PPARG with monocyte was demonstrated across both training and validation datasets in CAD. PPARG expression is observed in control synovial epithelial cells and foamy macrophages of arterial walls, but was decreased in synovial epithelium of RA patients. Its expression in foamy macrophages of atherosclerotic vascular walls exhibits a positive correlation (r = 0.6276, p = 0.0002) with CD68. CONCLUSION: Our findings suggest that PPARG may serve as a potentially predictive marker for CAD in RA patients, which provides new insights into the molecular mechanism underling RA linked CAD.


Subject(s)
Arthritis, Rheumatoid , Atherosclerosis , Coronary Artery Disease , Humans , Arthritis, Rheumatoid/genetics , Atherosclerosis/genetics , Computational Biology , Coronary Artery Disease/genetics , Data Analysis , Gene Expression Profiling , Gene Regulatory Networks , Inflammation , PPAR gamma/genetics
19.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38559052

ABSTRACT

In-space manufacturing of nanomaterials is a promising concept while having limited successful examples. DNA-inspired Janus base nanomaterials (JBNs), used for therapeutics delivery and tissue regeneration, are fabricated via a controlled self-assembly process in water at ambient temperature, making them highly suitable for in-space manufacturing. For the first time, we designed and accomplished the production of JBNs on orbit during the Axiom-2 (Ax-2) mission demonstrating great promising and benefits of in-space manufacturing of nanomaterials.

20.
J Neurotrauma ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38553903

ABSTRACT

Traumatic brain injury (TBI) persists as a substantial clinical dilemma, largely because of the absence of effective treatments. This challenge is exacerbated by the hindered clearance of intracranial metabolic byproducts and the continual accrual of deleterious proteins. The glymphatic system (GS) and meningeal lymphatic vessels (MLVs), key elements of the intracranial lymphatic network, play critical roles in the clearance of harmful substances. Cannabidiol (CBD) has shown promise in reducing metabolite overload and bolstering cognitive performance in various neurodegenerative diseases. The precise mechanisms attributing to its beneficial effects in TBI scenarios, however, are yet to be distinctly understood. Utilizing a fluid percussion injury paradigm, our research adopted a multifaceted approach, encompassing behavioral testing, immunofluorescence and immunohistochemical analyses, laser speckle imaging, western blot techniques, and bilateral cervical efferent lymphatic ligation. This methodology aimed to discern the influence of CBD on both neurological outcomes and intracranial lymphatic clearance in a murine TBI model. We observed that CBD administration notably ameliorated motor, memory, and cognitive functions, concurrently with a significant reduction in the concentration of phosphorylated tau protein and amyloid-ß. In addition, CBD expedited the turnover and elimination of intracranial tracers, increased cerebral blood flow, and enhanced the efficacy of fluorescent tracer migration from MLVs to deep cervical lymph nodes (dCLNs). Remarkably, CBD treatment also induced a reversion in aquaporin-4 (AQP-4) polarization and curtailed neuroinflammatory indices. A pivotal discovery was that the surgical interruption of efferent lymphatic conduits in the neck nullified CBD's positive contributions to intracranial waste disposal and cognitive improvement, yet the anti-neuroinflammatory actions remained unaffected. These insights suggest that CBD may enhance intracranial metabolite clearance, potentially via the regulation of the intracranial lymphatic system, thereby offering neurofunctional prognostic improvement in TBI models. Our findings underscore the potential therapeutic applicability of CBD in TBI interventions, necessitating further comprehensive investigations and clinical validations to substantiate these initial conclusions.

SELECTION OF CITATIONS
SEARCH DETAIL
...