Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.340
Filter
1.
J Environ Sci (China) ; 147: 498-511, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003065

ABSTRACT

The land application of livestock manure has been widely acknowledged as a beneficial approach for nutrient recycling and environmental protection. However, the impact of residual antibiotics, a common contaminant of manure, on the degradation of organic compounds and nutrient release in Eutric Regosol is not well understood. Here, we studied, how oxytetracycline (OTC) and ciprofloxacin (CIP) affect the decomposition, microbial community structure, extracellular enzyme activities and nutrient release from cattle and pig manure using litterbag incubation experiments. Results showed that OTC and CIP greatly inhibited livestock manure decomposition, causing a decreased rate of carbon (28%-87%), nitrogen (15%-44%) and phosphorus (26%-43%) release. The relative abundance of gram-negative (G-) bacteria was reduced by 4.0%-13% while fungi increased by 7.0%-71% during a 28-day incubation period. Co-occurrence network analysis showed that antibiotic exposure disrupted microbial interactions, particularly among G- bacteria, G+ bacteria, and actinomycetes. These changes in microbial community structure and function resulted in decreased activity of urease, ß-1,4-N-acetyl-glucosaminidase, alkaline protease, chitinase, and catalase, causing reduced decomposition and nutrient release in cattle and pig manures. These findings advance our understanding of decomposition and nutrient recycling from manure-contaminated antibiotics, which will help facilitate sustainable agricultural production and soil carbon sequestration.


Subject(s)
Anti-Bacterial Agents , Livestock , Manure , Soil Microbiology , Animals , Soil/chemistry , Carbon Sequestration , Carbon/metabolism , Phosphorus , Recycling , Soil Pollutants/metabolism , Cattle , Swine , Nitrogen/analysis , Oxytetracycline
2.
Dalton Trans ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952237

ABSTRACT

Electrocatalytic water splitting is a promising production method for green hydrogen; however, its practical application is limited by the lack of robust catalysts for the cathode hydrogen evolution reaction (HER). Recently, the use of Ru in electrocatalytic HER has become a research hotspot because Ru has a metal-hydrogen bond strength similar to that of Pt - known for its excellent HER activity - but has a lower cost than Pt. Numerous modification strategies are available to further improve the HER activity of metal Ru such as vulcanisation, phosphating and atomisation. The atomisation strategy has attracted much attention owing to its extremely high Ru atomic utilisation efficiency and tunable electronic structures. However, isolated studies could not effectively address the bottlenecks. Therefore, to promote the effective exploration of Ru-based single-atom catalysts and clarify the research status in this field, studies on related topics (e.g. Ru single-atom catalysts, Ru dual-atom catalysts, composite catalysts containing single-atom Ru and Ru nanoparticles) have been systematically and briefly summarised herein. Finally, the research challenges and prospects of Ru-based single-atom catalysts in the HER field have been discussed, which may provide valuable insights for further research.

3.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 414-424, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38953266

ABSTRACT

Helicobacter pylori (Hp) is a common Gram-negative bacillus causing gastrointestinal infections.It mainly exists on the surface of gastric epithelial cells and in mucus and is associated with gastric ulcers,gastric cancer,and gastric mucosa-associated lymphomas.Studies have shown that Hp can induce or exacerbate certain extragastric diseases and is associated with the occurrence of coronavirus disease 2019.It is hypothesized that Hp may be indirectly or directly involved in the occurrence and development of diseases by stimulating the production of inflammatory cytokines or inducing cross-immune reactions.In addition,Hp can enter Candida to release toxins continuously and play a role in escaping the recognition of the host immune system and the bactericidal effect of drugs.This article reviews the research progress in Hp-associated extragastric diseases in recent years,aiming to draw the attention of clinical workers to Hp-associated extragastric diseases and enrich the knowledge about Hp infection for formulating countermeasures to avoid the aggravation or triggering of other diseases by Hp.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/complications , COVID-19
4.
Prev Med Rep ; 44: 102798, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38983448

ABSTRACT

Background: Non-alcoholic fatty liver disease (NAFLD), a chronic liver condition of increasing prevalence, is closely related to various metabolic disorders. Hemoglobin, a protein that transports oxygen in red blood cells, is the focus of this study, which seeks to investigate its potential association with NAFLD. Methods: We selected 6,516 eligible adult participants from the United States using the 2017-2020 National Health and Nutrition Examination Survey database for cross-sectional analyses. We analyzed the association of hemoglobin with NAFLD using weighted logistic regression models. Results: The study performed a weighted logistic regression modeling analysis, which verified that hemoglobin levels were positively associated with NAFLD, especially in the higher hemoglobin quartile groups. Subgroup analyses revealed no significant interactions, demonstrating the robustness of the model. The analysis of mediation effects showed that Gamma-Glutamyl Transferase, Alanine Aminotransferase, and triglycerides were important mediating variables in the relationship between hemoglobin and NAFLD. Conclusion: Increased hemoglobin levels were found to be significantly and independently associated with an increased NAFLD risk. This insight is crucial for the risk assessment and early detection of NAFLD, underscoring the need for heightened vigilance in individuals with higher hemoglobin levels.

5.
Medicine (Baltimore) ; 103(27): e38742, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968482

ABSTRACT

In orthodontic treatment of patients during the mixed dentition period, arch expansion and opening deep overbite are one of the objectives to achieve proper alignment of the teeth and correction of sagittal and vertical discrepancies. However, the expected outcomes of most therapeutic regimens are not clear, making it impossible to standardize early treatment effects. Therefore, this study was designed to evaluate the impact of the Invisalign® First System on the dental arch circumference and incisor inclination in patients during the mixed dentition period. A total of 21 children during the mixed dentition period (10 females and 11 males, with an average age of 8.76 years) were included in this study. The patients received non-extraction treatment through Invisalign® First System clear aligners, and no other auxiliary devices were used except Invisalign® accessories. Subsequently, the cooperation degree of patients during treatment and the oral measurement parameters at the beginning (T1) and the end (T2) of treatment were collected. All patients showed moderate/good cooperation degree during treatment. Besides, horizontal width of the maxillary first molar increased significantly; the designed arch expansion was 4.1 mm (±1.4 mm), while the actual arch expansion was 3.0 mm (±1.7 mm). Furthermore, the torque expression rate of upper anterior teeth reached 56.53%. Invisalign® First System clear aligners can effectively correct the teeth of patients during the mixed dentition period, widen the circumference of dental arch, and control the torque of incisors.


Subject(s)
Dentition, Mixed , Incisor , Malocclusion , Molar , Torque , Humans , Male , Female , Child , Malocclusion/therapy , Orthodontic Appliances, Removable , Dental Arch , Orthodontic Appliance Design , Tooth Movement Techniques/instrumentation , Tooth Movement Techniques/methods
6.
J Glob Health ; 14: 04109, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38991211

ABSTRACT

Background: Preterm birth and low birth weight (PBLBW), recognised globally as primary contributors to infant mortality in children under five, have not been sufficiently investigated in terms of their worldwide impact. In this study we aimed to thoroughly evaluate the contemporary trends in disease burden attributable to PBLBW. Methods: We analysed data from 204 countries and territories between 1990-2019, as sourced from the 2019 Global Burden of Disease Study. We analysed the global incidence of mortality and disability-adjusted life years (DALYs) associated with PBLBW, stratified by age, gender, year, and geographic location, alongside the socio-demographic index (SDI). We calculated the annual percentage changes to evaluate the dynamic trends over time. We employed a generalised linear model and scrutinised the relationship between the SDI and the disease burden attributed to PBLBW. Results: In 2019, the global age-standardised rate of deaths and DALYs related to PBLBW showed significant declines. Over the period 1990-2019, both death and DALY rates displayed substantial downward trends, with similar change trends observed for both females and males. Age-specific ratios revealed a decrease in PBLBW-related deaths and DALYs with increasing age, primarily during the neonatal stages (zero to 27 days). The leading three causes of PBLBW-related DALYs in 2019 were neonatal disorders, lower respiratory infections, and sudden infant death syndrome. Furthermore, the association between SDI and PBLBW-related DALYs indicated that the age-standardised DALY rates in 204 countries and territories worldwide were negatively correlated with SDI in 2019. From 1990 to 2019, the age-standardised DALY rates decreased linearly in most regions, except sub-Saharan Africa. Conclusions: The persistent global burden of disease associated with PBLBW is particularly pronounced in neonates aged less than 28 days and in regions with low SDI. In this study, we highlighted the critical need for tailored interventions aimed at mitigating the detrimental effects of PBLBW to attain specific sustainable development goals, particularly those centred on enhancing child survival and overall well-being.


Subject(s)
Disability-Adjusted Life Years , Global Burden of Disease , Global Health , Infant Mortality , Infant, Low Birth Weight , Premature Birth , Humans , Global Burden of Disease/trends , Female , Infant, Newborn , Male , Infant , Premature Birth/epidemiology , Global Health/statistics & numerical data , Infant Mortality/trends , Child, Preschool
8.
J Transl Med ; 22(1): 662, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010104

ABSTRACT

BACKGROUND: Temporomandibular joint osteoarthritis (TMJOA) has a high incidence rate, but its pathogenesis remains unclear. Circadian rhythm is an important oscillation in the human body and influences various biological activities. However, it is still unclear whether circadian rhythm affects the onset and development of TMJOA. METHODS: We disrupted the normal rhythm of rats and examined the expression of core clock genes in the mandibular condylar cartilage of the jaw and histological changes in condyles. After isolating rat mandibular condylar chondrocytes, we upregulated or downregulated the clock gene Per1, examined the expression of cartilage matrix-degrading enzymes, tested the activation of the GSK3ß/ß-CATENIN pathway and verified it using agonists and inhibitors. Finally, after downregulating the expression of Per1 in the mandibular condylar cartilage of rats with jet lag, we examined the expression of cartilage matrix-degrading enzymes and histological changes in condyles. RESULTS: Jet lag led to TMJOA-like lesions in the rat mandibular condyles, and the expression of the clock gene Per1 and cartilage matrix-degrading enzymes increased in the condylar cartilage of rats. When Per1 was downregulated or upregulated in mandibular condylar chondrocytes, the GSK3ß/ß-CATENIN pathway was inhibited or activated, and the expression of cartilage matrix-degrading enzymes decreased or increased, which can be rescued by activator and inhibitor of the GSK3ß/ß-CATENIN pathway. Moreover, after down-regulation of Per1 in mandibular condylar cartilage in vivo, significant alleviation of cartilage degradation, cartilage loss, subchondral bone loss induced by jet lag, and inhibition of the GSK3ß/ß-CATENIN signaling pathway were observed. Circadian rhythm disruption can lead to TMJOA. The clock gene Per1 can promote the occurrence of TMJOA by activating the GSK3ß/ß-CATENIN pathway and promoting the expression of cartilage matrix-degrading enzymes. The clock gene Per1 is a target for the prevention and treatment of TMJOA.


Subject(s)
Chondrocytes , Circadian Rhythm , Glycogen Synthase Kinase 3 beta , Mandibular Condyle , Osteoarthritis , Period Circadian Proteins , Temporomandibular Joint , Up-Regulation , beta Catenin , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , beta Catenin/metabolism , Osteoarthritis/pathology , Osteoarthritis/metabolism , Period Circadian Proteins/metabolism , Period Circadian Proteins/genetics , Mandibular Condyle/pathology , Mandibular Condyle/metabolism , Temporomandibular Joint/pathology , Temporomandibular Joint/metabolism , Male , Rats, Sprague-Dawley , Signal Transduction , Rats
9.
Heliyon ; 10(12): e33326, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021974

ABSTRACT

Background: Acute respiratory failure is the main clinical manifestation and a major cause of death in patients with COVID-19. However, few reports on its prevention and control have been published because of the need for laboratory predictive indicators. This study aimed to evaluate the predictive value of hematocrit level, serum albumin level difference, and fibrinogen-to-albumin ratio for COVID-19-associated acute respiratory failure. Material and methods: A total of 120 patients with COVID-19 from the First Affiliated Hospital of Anhui Medical University were selected between December 2022 and March 2023. Patients were divided into acute respiratory failure and non-acute respiratory failure groups and compared patient-related indicators between them using univariate and multivariate logistic regression analyses. Receiver operating characteristic analysis was performed to determine the discrimination accuracy. Results: In total, 48 and 72 patients were enrolled in the acute respiratory failure and non-acute respiratory failure groups, respectively. The Quick COVID-19 Severity Index scores, fibrinogen-to-albumin ratio, hematocrit and serum albumin level difference, fibrinogen, and hematocrit levels were significantly higher in the acute respiratory failure group than in the non-acute respiratory failure group. A Quick COVID-19 Severity Index >7, fibrinogen-to-albumin ratio >0.265, and hematocrit and serum albumin level difference >12.792 had a 96.14 % positive predictive rate and a 94.06 % negative predictive rate. Conclusion: Both fibrinogen-to-albumin ratio and hematocrit and serum albumin level difference are risk factors for COVID-19-associated acute respiratory failure. The Quick COVID-19 Severity Index score combined with fibrinogen-to-albumin ratio, and hematocrit and serum albumin level difference predict high and low risks with better efficacy and sensitivity than those of the Quick COVID-19 Severity Index score alone; therefore, these parameters can be used collectively as a risk stratification method for assessing patients with COVID-19.

10.
Int J Biol Macromol ; 275(Pt 1): 133599, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960263

ABSTRACT

Helicobacter pylori (H. pylori) is one of the major causes of gastrointestinal diseases, including gastric cancer. However, the acidic environment of the stomach and H. pylori resistance severely impair the antimicrobial efficacy of oral drugs. Here, a biocompatible chitosan-modified molybdenum selenide (MoSe2@CS) was designed for the simultaneous photothermal treatment of H. pylori infection and gastric cancer. MoSe2@CS showed a photothermal conversion efficiency was as high as 45.7 %. In the H. pylori-infected mice model, MoSe2@CS displayed a high bacteriostasis ratio of 99.9 % upon near-infrared irradiation. The antimicrobial functionality was also proved by transcriptomic sequencing study, which showed that MoSe2@CS combined with NIR laser irradiation modulated the gene expression of a variety of H. pylori bioprocesses, including cell proliferation and inflammation-related pathways. Further gut flora analysis results indicated that MoSe2@CS mediated PTT of H. pylori did not affect the homeostasis of gut flora, which highlights its advantages over traditional antibiotic therapy. In addition, MoSe2@CS exhibited a good photothermal ablation effect and significantly inhibited gastric tumor growth in vitro and in vivo. The comprehensive application of MoSe2@CS in the PTT of H. pylori infection and gastric cancer provides a new avenue for the clinical treatment of H. pylori infection and related diseases.

11.
J Hazard Mater ; 476: 135009, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38964037

ABSTRACT

The development of nanozymes (NZ) for the simultaneous detection of multiple target chemicals is gaining paramount attention in the field of food and health sciences, and waste management industries. Nanozymes (NZ) effectively compensate for the environmental vulnerability of natural enzymes. Considering the development gap of NZ with diverse applications, we synthesized versatile Schiff's base ligands following a facile route and readily available starting reagents (glutaraldehyde, aminopyridines). DPDI, one of the synthesized ligands, readily reacted with transition metal ions (Cu+2, Ag+1, Zn+2 in specific) under ambient conditions, yielding the corresponding nanoparticles/MOF. The structures of ligands and their products were confirmed using various analytical techniques. The enzymatic efficacy of DPDI-Cu (km 0.25 mM=, Vmax = 10.75 µM/sec) surpassed Tremetese versicolor laccase efficacy (km 0. 5 mM=, Vmax = 2.15 µM/sec). Additionally, DPDI-Cu proved resilient to changing pH, temperature, ionic strength, organic solvent, and storage time compared to laccase and provided reusability. DPDI-Cu proved promising for colorimetric detection of dopamine, epinephrine, catechol, tetracycline, and quercetin. The mechanism of oxidative detection of TC was studied through LC/MS analysis. DPDI-Cu-bentonite composite efficiently adsorbed tetracycline with maximum Langmuir adsorption of 208 mg/g. Moreover, DPDI/Cu and DPDI-Ag nanoparticles possessed antifungal activity exhibiting a minimum inhibitory concentration of 400 µg/mL and 3.12 µg/mL against Aspergillus flavus. Florescent dye tracking and SEM/TEM analysis confirmed that DPDI-Ag caused disruption of the plasma membrane and triggered ROS generation and apoptosis-like death in fungal cells. The DPDI-Ag coating treatment of wheat seeds confirmed the non-phytotoxicity of Ag-NPs.

12.
Article in English | MEDLINE | ID: mdl-38967825

ABSTRACT

Trophinin-associated protein (TROAP), a cytoplasmic protein essential for spindle assembly and centrosome integrity during mitosis, has been reported to serve as an oncogene in various tumors. However, its role in endometrial cancer (EC) progression is still undefined. TROAP expression in EC was analyzed via GEPIA and HPA databases. The diagnostic and prognostic values of TROAP were examined by ROC curve analysis and Kaplan-Meier plotter, respectively. Cell proliferation was evaluated using CCK-8 and EdU incorporation assays. Apoptosis was assessed using TUNEL and flow cytometry assays. GSEA was performed to explore TROAP-related pathways in EC. Expression of TROAP, proliferating cell nuclear antigen (PCNA), Ki-67, cleaved-caspase-3 (cl-caspase-3), caspase-3, active ß-catenin, and total ß-catenin was detected using western blot analysis. TROAP was upregulated in EC. TROAP served as a potential diagnostic and prognostic marker in EC patients. TROAP silencing suppressed proliferation and enhanced apoptosis in EC cells. GSEA revealed that EC and Wnt signaling pathways were related to the expression of TROAP. We further demonstrated that TROAP knockout repressed the Wnt/ß-catenin pathway in EC cells. Moreover, SKL2001, a Wnt/ß-catenin activator, partially abrogated the effects of TROAP silencing on EC cell proliferation and apoptosis, while the signaling inhibitor XAV-939 had the opposite effect. In conclusion, TROAP knockout retarded proliferation and elicited apoptosis in EC cells by blocking the Wnt/ß-catenin pathway.

13.
Nano Lett ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985521

ABSTRACT

The electrochemical nitrate reduction reaction (NO3RR) is considered a sustainable technology to convert the nitrate pollutants to ammonia. However, developing highly efficient electrocatalysts is necessary and challenging given the slow kinetics of the NO3RR with an eight-electron transfer process. Here, a Cu1.5Mn1.5O4 (CMO)/CeO2 heterostructure with rich interfaces is designed and fabricated through an electrospinning and postprocessing technique. Benefiting from the strong coupling between CMO and CeO2, the optimized CMO/CeO2-2 catalyst presents excellent NO3RR performance, with NH3 Faraday efficiency (FE) up to 93.07 ± 1.45% at -0.481 V vs reversible hydrogen electrode (RHE) and NH3 yield rate up to 48.06 ± 1.32 mg cm-2 h-1 at -0.681 V vs RHE. Theoretical calculations demonstrate that the integration of CeO2 with CMO modulates the adsorption/desorption process of the reactants and intermediates, showing a reduced energy barrier in the rate determination step of NO* to N* and achieving an outstanding NO3RR performance.

14.
Sci Transl Med ; 16(755): eadn0689, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985856

ABSTRACT

Mutations in microRNA-96 (MIR96) cause autosomal dominant deafness-50 (DFNA50), a form of delayed-onset hearing loss. Genome editing has shown efficacy in hearing recovery through intervention in neonatal mice, yet editing in the adult inner ear is necessary for clinical applications, which has not been done. Here, we developed a genome editing therapy for the MIR96 mutation 14C>A by screening different CRISPR systems and optimizing Cas9 expression and the sgRNA scaffold for efficient and specific mutation editing. AAV delivery of the KKH variant of Staphylococcus aureus Cas9 (SaCas9-KKH) and sgRNA to the cochleae of presymptomatic (3-week-old) and symptomatic (6-week-old) adult Mir9614C>A/+ mutant mice improved hearing long term, with efficacy increased by injection at a younger age. Adult inner ear delivery resulted in transient Cas9 expression without evidence of AAV genomic integration, indicating the good safety profile of our in vivo genome editing strategy. We developed a dual-AAV system, including an AAV-sgmiR96-master carrying sgRNAs against all known human MIR96 mutations. Because mouse and human MIR96 sequences share 100% homology, our approach and sgRNA selection for efficient and specific hair cell editing for long-term hearing recovery lay the foundation for the development of treatment for patients with DFNA50 caused by MIR96 mutations.


Subject(s)
Dependovirus , Gene Editing , Hearing Loss , MicroRNAs , Mutation , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Editing/methods , Humans , Mutation/genetics , Hearing Loss/genetics , Hearing Loss/therapy , Dependovirus/genetics , Mice , CRISPR-Cas Systems/genetics , Cochlea/metabolism , Genetic Therapy/methods , RNA, Guide, CRISPR-Cas Systems/genetics , Base Sequence , Hearing
15.
Environ Sci Technol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989650

ABSTRACT

Anaerobic digestion (AD) is commonly used in food waste treatment. Prokaryotic microbial communities in AD of food waste have been comprehensively studied. The role of viruses, known to affect microbial dynamics and metabolism, remains largely unexplored. This study employed metagenomic analysis and recovered 967 high-quality viral bins within food waste and digestate derived from 8 full-scale biogas plants. The diversity of viral communities was higher in digestate. In silico predictions linked 20.8% of viruses to microbial host populations, highlighting possible virus predators of key functional microbes. Lineage-specific virus-host ratio varied, indicating that viral infection dynamics might differentially affect microbial responses to the varying process parameters. Evidence for virus-mediated gene transfer was identified, emphasizing the potential role of viruses in controlling the microbiome. AD altered the specific process parameters, potentially promoting a shift in viral lifestyle from lysogenic to lytic. Viruses encoding auxiliary metabolic genes (AMGs) were involved in microbial carbon and nutrient cycling, and most AMGs were transcriptionally expressed in digestate, meaning that viruses with active functional states were likely actively involved in AD. These findings provided a comprehensive profile of viral and bacterial communities and expanded knowledge of the interactions between viruses and hosts in food waste and digestate.

16.
Oncoimmunology ; 13(1): 2376264, 2024.
Article in English | MEDLINE | ID: mdl-38988824

ABSTRACT

Functional roles of SIGLEC15 in hepatocellular carcinoma (HCC) were not clear, which was recently found to be an immune inhibitor with similar structure of inhibitory B7 family members. SIGLEC15 expression in HCC was explored in public databases and further examined by PCR analysis. SIGLEC15 and PD-L1 expression patterns were examined in HCC samples through immunohistochemistry. SIGLEC15 expression was knocked-down or over-expressed in HCC cell lines, and CCK8 tests were used to examine cell proliferative ability in vitro. Influences of SIGLEC15 expression on tumor growth were examined in immune deficient and immunocompetent mice respectively. Co-culture system of HCC cell lines and Jurkat cells, flow cytometry analysis of tumor infiltrated immune cells and further sequencing analyses were performed to investigate how SIGLEC15 could affect T cells in vitro and in vivo. We found SIGLEC15 was increased in HCC tumor tissues and was negatively correlated with PD-L1 in HCC samples. In vitro and in vivo models demonstrated inhibition of SIGLEC15 did not directly influence tumor proliferation. However, SIGLEC15 could promoted HCC immune evasion in immune competent mouse models. Knock-out of Siglec15 could inhibit tumor growth and reinvigorate CD8+ T cell cytotoxicity. Anti-SIGLEC15 treatment could effectively inhibit tumor growth in mouse models with or without mononuclear phagocyte deletion. Bulk and single-cell RNA sequencing data of treated mouse tumors demonstrated SIGLEC15 could interfere CD8+ T cell viability and induce cell apoptosis. In all, SIGLEC15 was negatively correlated with PD-L1 in HCC and mainly promote HCC immune evasion through inhibition of CD8+ T cell viability and cytotoxicity.


Subject(s)
Apoptosis , B7-H1 Antigen , CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Tumor Escape/genetics , Cell Line, Tumor , Cell Proliferation , Male , Female , Membrane Proteins/genetics , Membrane Proteins/metabolism , Immune Evasion , Immunoglobulins
17.
Front Oncol ; 14: 1352111, 2024.
Article in English | MEDLINE | ID: mdl-39015489

ABSTRACT

Background: Patients with early-stage breast cancer may have a higher risk of dying from other diseases, making a competing risks model more appropriate. Considering subdistribution hazard ratio, which is used often, limited to model assumptions and clinical interpretation, we aimed to quantify the effects of prognostic factors by an absolute indicator, the difference in restricted mean time lost (RMTL), which is more intuitive. Additionally, prognostic factors of breast cancer may have dynamic effects (time-varying effects) in long-term follow-up. However, existing competing risks regression models only provide a static view of covariate effects, leading to a distorted assessment of the prognostic factor. Methods: To address this issue, we proposed a dynamic effect RMTL regression that can explore the between-group cumulative difference in mean life lost over a period of time and obtain the real-time effect by the speed of accumulation, as well as personalized predictions on a time scale. Results: A simulation validated the accuracy of the coefficient estimates in the proposed regression. Applying this model to an older early-stage breast cancer cohort, it was found that 1) the protective effects of positive estrogen receptor and chemotherapy decreased over time; 2) the protective effect of breast-conserving surgery increased over time; and 3) the deleterious effects of stage T2, stage N2, and histologic grade II cancer increased over time. Moreover, from the view of prediction, the mean C-index in external validation reached 0.78. Conclusion: Dynamic effect RMTL regression can analyze both dynamic cumulative effects and real-time effects of covariates, providing a more comprehensive prognosis and better prediction when competing risks exist.

19.
Sensors (Basel) ; 24(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931738

ABSTRACT

Borehole strain gauges play a crucial role in geophysical, seismological, and crustal dynamics studies. While existing borehole strain gauges are proficient in measuring horizontal strains within vertical boreholes, their effectiveness in capturing vertical and oblique strains is limited due to technical constraints arising from the cylindrical probe's characteristics. However, the accurate measurement of three-dimensional strain is essential for a comprehensive understanding of crustal tectonics, dynamics, and geophysics, particularly considering the diverse geological structures and force sources within the crustal medium. In this study, we present a novel approach to address this challenge by enhancing an existing horizontal-component borehole strain gauge with a bellows structure and line strain measurement technology to enable vertical and borehole oblique strain measurements. Integrating these enhancements with horizontal strain measurement capabilities enables comprehensive three-dimensional borehole strain measurements within the same hole section. The system was deployed and tested at the Gongxian seismic station in Sichuan Province. Clear observations of solid tides were recorded across horizontal, oblique, and vertical measurement units, with the tidal morphology and amplitude being consistent with the theoretical calculations. The achieved measurement sensitivity of 10-10 meets the requirements for borehole strain measurement, enabling the characterization of three-dimensional strain states within boreholes through association methods.

20.
Materials (Basel) ; 17(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38930395

ABSTRACT

The purpose of this research is to investigate the utilization potential of recycled powder made from spent coffee grounds (SCGs) and aerated concrete blocks (ACBs) in green-growing concrete. The green-growing concrete is prepared using ACB powder and SCG ash as raw materials instead of 5%, 15%, and 25% and 5%, 10%, and 15% cement, respectively. Then, the two raw materials are compounded with the optimal content. The compressive strength and alkalinity of green-growing concrete at 7d and 28d and the frost resistance after 25 freeze-thaw cycles at 28d are studied. The results showed that the optimum content of ACB powder and SCG ash was 5%. Replacing 5% cement with recycled powder could improve the strength of concrete. The alkalinity of concrete containing ACB powder gradually increased, while the alkalinity of concrete containing SCG ash gradually decreased. The alkalinity of ACB-SCG powder was lower than that of ACB powder but slightly higher than that of SCG ash. The frost resistance of concrete containing ACB powder decreased gradually, and the frost resistance of concrete containing SCG ash increased first and then decreased greatly. The frost resistance of ACB-SCG powder could neutralize that of ACB powder and SCG ash.

SELECTION OF CITATIONS
SEARCH DETAIL
...