Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Inorg Chem ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967129

ABSTRACT

The development and exploration of uranium decorporation agents with straightforward synthesis, high removal ability, and low toxicity are crucial guarantees for the safety of workers in the nuclear industry and the public. Herein, we report the use of traditional Chinese medicine licorice for uranium decorporation. Licorice has good adsorption performance and excellent selectivity for uranium in the simulated human environment. Glycyrrhizic acid (GL) has a high affinity for uranium (p(UO2) = 13.67) and will complex with uranium at the carbonyl site. Both licorice and GL exhibit lower cytotoxicity compared to the commercial clinical decorporation agent diethylenetriamine pentaacetate sodium salts (CaNa3-DTPA). Notably, at the cellular level, the uranium removal efficiency of GL is eight times higher than that of CaNa3-DTPA. Administration of GL by prophylactic intraperitoneal injection demonstrates that its uranium removal efficiency from kidneys and bones is 55.2 and 23.9%, while CaNa3-DTPA shows an insignificant effect. The density functional theory calculation of the bonding energy between GL and uranium demonstrates that GL exhibits a higher binding affinity (-2.01 vs -1.15 eV) to uranium compared to DTPA. These findings support the potential of licorice and its active ingredient, GL, as promising candidates for uranium decorporation agents.

2.
Toxicology ; 506: 153863, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878878

ABSTRACT

Patulin (PAT), the most common mycotoxin, is widespread in foods and beverages which poses a serious food safety issue to human health. Our previous research confirmed that exposure to PAT can lead to acute kidney injury (AKI). Curcumin is the most abundant active ingredient in turmeric rhizome with various biological activities. The aim of this study is to investigate whether curcumin can prevent the renal injury caused by PAT, and to explore potential mechanisms. In vivo, supplementation with curcumin attenuated PAT-induced ferroptosis. Mechanically, curcumin inhibited autophagy, led to the accumulation of p62 and its interaction with Keap1, promoted the nuclear translocation of nuclear factor E2 related factor 2 (Nrf2), and increased the expression of antioxidant stress factors in the process of ferroptosis. These results have also been confirmed in HKC cell experiments. Furthermore, knockdown of Nrf2 in HKC cells abrogated the protective effect of curcumin on ferroptosis. In conclusion, we confirmed that curcumin mitigated PAT-induced AKI by inhibiting ferroptosis via activation of the p62/Keap1/Nrf2 pathway. This study provides new potential targets and ideas for the prevention and treatment of PAT.

3.
Heliyon ; 10(10): e31255, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38818202

ABSTRACT

Urinary tract infection (UTI) is one of the most common infectious diseases among children, but there is controversy regarding the use of preventive antibiotics for children first diagnosed with febrile pyelonephritis. To the best of our knowledge, no studies have addressed this issue by the deep learning technology. Therefore, in the current study, we conducted a study using Tc99m-DMSA renal static imaging data to investigate the need for preventive antibiotics on children first diagnosed with febrile pyelonephritis under 2 years old. The self-collected dataset comprised 64 children who did not require preventive antibiotic treatments and 112 children who did. Using several classic deep learning models, we verified that it is feasible to screen whether the first diagnosed children with febrile pyelonephritis require preventive antibacterial therapy, achieving a graded diagnosis. With the AlexNet model, we obtained accuracy of 84.05%, sensitivity of 81.71% and specificity of 86.70%, respectively. The experimental results indicate that deep learning technology could provide a new avenue to implement computer-assisted decision support for the diagnosis of the febrile pyelonephritis.

4.
Curr Med Chem ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38549536

ABSTRACT

Curcumin is a naturally polyphenolic compound used for hepatoprotective, thrombosuppressive, neuroprotective, cardioprotective, antineoplastic, antiproliferative, hypoglycemic, and antiarthritic effects. Kidney disease is a major public health problem associated with severe clinical complications worldwide. The protective effects of curcumin against nephrotoxicity have been evaluated in several experimental models. In this review, we discussed how curcumin exerts its protective effect against renal toxicity and also illustrated the mechanisms of action such as anti-inflammatory, antioxidant, regulating cell death, and anti-fibrotic. This provides new perspectives and directions for the clinical guidance and molecular mechanisms for the treatment of renal diseases by curcumin.

5.
Curr Med Imaging ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38415481

ABSTRACT

BACKGROUND: Whole-body bone scanning is a nuclear medicine technique with high sensitivity used for the diagnosis of bone-related diseases [e.g., bone metastases] that can be obtained by positron emission tomography[PET] or single-photon emission computed tomography[SPECT] imaging, depending on the different radiopharmaceuticals used. In contrast to the high sensitivity of the bone scan, it has low specificity, which leads to misinterpretation, causing adverse effects of unwarranted intervention or interruption to timely treatment. OBJECTIVE: To address this problem, this paper proposes a joint model called mSegResRF-SPECT, which accomplishes for the first time the task of classifying whole-body bone scan images on a public SPECT dataset [BS-80K] for the diagnosis of bone metastases. METHODS: The mSegResRF-SPECT adopts a multi-bone region segmentation algorithm to segment the whole body image into 13 regions, ResNet34 as an extractor to extract the regional features, and a random forest algorithm as a classifier. RESULTS: The experimental results of the proposed model show that the average accuracy, sensitivity, and F1 score of the model on the BS-80K dataset reached SOTA. CONCLUSION: The proposed method presents a promising solution for better bone scan classification methods.

6.
ACS Appl Mater Interfaces ; 16(4): 4648-4660, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38241136

ABSTRACT

Ceria-based oxides, such as samaria-doped ceria (SDC), are potential electrolytes for low-to-intermediate-temperature solid oxide fuel cells (SOFCs). The sinterability of these materials can be improved by adding iron as the sintering aid. This work reveals that Fe is soluble in SDC, forming an Fe-doped SDC solid solution. It is found that the solubility is affected by the sintering temperature. Fe doping has obvious effects on electrolyte properties, including sintering characteristics, thermal expansion behaviors, and electrical conductivities in both air and hydrogen atmospheres. The conductivity obviously increases while the activation energy decreases by doping Fe. Compared with that of the bare SDC electrolyte, the performance of the single cell with the Fe-doped SDC is enhanced; for example, the peak power density is increased by 52.8% to 0.726 W cm-2 at 600 °C when humidified hydrogen is used as the fuel and ambient air is used as the oxidant. The single cell showed stable operation at 600 °C under a constant current density of 0.3 A cm-2 for 150 h. Therefore, the Fe-doped SDC solid solution shows promise as a potential electrolyte for low-to-intermediate-temperature SOFCs.

7.
Clin Nucl Med ; 49(1): 81-82, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37937956

ABSTRACT

ABSTRACT: Solitary pulmonary fibroleiomyomatous hamartoma is a very rare benign tumor. A 57-year-old man presented with dry cough over 1 month. A CT showed an irregular nodule in the left upper lobe of the lung. A malignant tumor was suspected, and further investigation with 18 F-FDG PET/CT showed the pulmonary nodule with slightly increased FDG uptake. Thoracoscopic resection was performed. Subsequent histopathological and immunohistochemical tests confirmed the diagnosis of fibroleiomyomatous hamartoma.


Subject(s)
Hamartoma , Lung Neoplasms , Solitary Pulmonary Nodule , Male , Humans , Middle Aged , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Positron-Emission Tomography , Hamartoma/diagnostic imaging , Hamartoma/pathology , Solitary Pulmonary Nodule/diagnostic imaging
8.
Sci Total Environ ; 912: 169438, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38135082

ABSTRACT

Shewanella putrefaciens (S. putrefaciens) is one of the main microorganisms in soil bioreactors, which mainly immobilizes uranium through reduction and mineralization processes. However, the effects of elements such as phosphorus and ZVI, which may be present in the actual environment, on the mineralization and reduction processes are still not clearly understood and the environment is mostly in the absence of oxygen. In this study, we ensure that all experiments are performed in an anaerobic glove box, and we elucidate through a combination of macroscopic experimental findings and microscopic characterization that the presence of inorganic phosphates enhances the mineralization of uranyl ions on the surface of S. putrefaciens, while zero-valent iron (ZVI) facilitates the immobilization of uranium by promoting the reduction of uranium by S. putrefaciens. Interestingly, when inorganic phosphates and ZVI co-exist, both the mineralization and reduction of uranium on the bacterial surface are simultaneously enhanced. However, these two substances exhibit a certain degree of antagonism in terms of uranium immobilization by S. putrefaciens. Furthermore, it is found that the influence of pH on the mineralization and reduction of uranyl ions is far more significant than that of inorganic phosphates and ZVI. This study contributes to a better understanding of the environmental fate of uranium in real-world settings and provides valuable theoretical support for the bioremediation and risk assessment of uranium contamination.


Subject(s)
Shewanella putrefaciens , Uranium , Iron/chemistry , Uranium/chemistry , Phosphates , Anaerobiosis , Ions
9.
Chemosphere ; 350: 141066, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159731

ABSTRACT

Radionuclide uranium is a great threat to human health, due to its high chemical toxicity and radioactivity. Finding suitable uranium decorporation to reduce damage caused by uranium internal contamination is an important aspect of nuclear emergency response. However, the poor selectivity and/or high toxicity of the only excretory promoter approved by Food and Drug Administration (FDA) is an obvious disadvantage. Herein, we choose an edible natural product, the traditional Chinese medicine called Perilla frutescens (PF), which has wide sources and can be used as an excellent and effective uranyl decorporation. In vivo uranium decorporation assays illustrate the removal efficiency of uranium in kidney were 68.87% and 43.26%, in femur were 56.66% and 54.53%, by the test of prophylactic and immediate administration, respectively. Cell level experiments confirmed that it had better biocompatibility than CaNa3-DTPA (CaNa3-diethylenetriamine pentaacetate, a commercial actinide excretion agent). In vitro static adsorption experiments exhibited that its excellent selectivity sorption for uranyl. All those results findings would provide new research insights about natural product for uranyl decorporation.


Subject(s)
Biological Products , Perilla frutescens , Uranium , Humans , Uranium/toxicity , Chelating Agents/pharmacology , Kidney , Biological Products/pharmacology
10.
J Mater Chem B ; 11(40): 9757-9764, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37807767

ABSTRACT

Stimuli-responsive/smart drug delivery systems (DDSs), particularly those that use temperature as a stimuli-response factor to activate drug release, are the subject of recent research. A phase change material (PCM) is a popular thermally responsive material that can be used as a drug carrier and only when the system temperature is above the phase change point is the drug released following the phase change material changing from solid to liquid. In this study, a novel NIR light-triggered temperature-sensitive drug delivery system is developed for controllable release of acyclovir (ACV). For this purpose, a mixture of a phase change material (T38) and an ACV compound is first emulsified with copper oxide nanoparticles (CuO NPs) as a Pickering stabilizer and a photothermal conversion material, and then encapsulated with SiO2 to form a photothermal stimuli-responsive delivery system. This system shows a uniform spherical shape with a well-distinct core-shell structure, and is further experimentally proven to be able to controllably release drugs with solid-liquid transition of the phase change carrier upon temperature change. These results indicate that cumulative release of ACV can reach 51.2% at 40 °C within 20 hours, which is much higher than 27.3% release achieved below the melting point of T38. In addition, CuO NPs with excellent photothermal conversion ability endow the system with precisely controllable drug delivery via NIR light stimulation, where the cumulative drug release can reach 83.6% after 7 cycles of light stimulation, allowing controlled release at a specific time or location.


Subject(s)
Doxorubicin , Silicon Dioxide , Temperature , Capsules , Doxorubicin/chemistry , Drug Delivery Systems/methods
11.
Bioorg Chem ; 140: 106785, 2023 11.
Article in English | MEDLINE | ID: mdl-37639759

ABSTRACT

Programmed death-ligand 1 (PD-L1) serves as a crucial biomarker for guiding the screening of cancer patients and the stratification of immunotherapy. However, due to the high heterogeneity of tumors, the current gold standard for detecting PD-L1 expression (immunohistochemistry) fails to comprehensively evaluate the overall PD-L1 expression levels in the body. Fortunately, the use of PD-L1 targeted radiotracers enables quantitative, real-time, and noninvasive assessment of PD-L1 expression levels and dynamics in tumors. Notably, analyzing the binding mode between the precursor and the target protein to find linker binding sites that do not affect the activity of the target molecule can greatly enhance the successful development of molecular probes. This study introduced a groundbreaking cyclic peptide molecular probe called 68Ga-DOTA-PG1. It was derived from the BMS-71 cyclic peptide and was specifically designed to evaluate the expression of PD-L1 in tumors. The radiolabeling yield of 68Ga-DOTA-PG1 surpassed 97% while maintaining a radiochemical purity of over 99%. In vitro experiments demonstrated the effective targeting of PD-L1 in tumor cells by 68Ga-DOTA-PG1, with significantly higher cellular uptake observed in A375-hPD-L1 cells (PD-L1 + ) compared to A375 cells (PD-L1-). Biodistribution and PET imaging studies consistently showed specific accumulation of 68Ga-DOTA-PG1 in A375-hPD-L1 tumors, with a maximum uptake of 11.06 ± 1.70% ID/g at 2 h, significantly higher than the tumor uptake in A375 cells (1.70 ± 0.17% ID/g). These results strongly indicated that 68Ga-DOTA-PG1 held great promise as a PET radiotracer for imaging PD-L1-positive tumors.


Subject(s)
Molecular Probes , Neoplasms , Humans , B7-H1 Antigen , Gallium Radioisotopes , Tissue Distribution , Computer-Aided Design , Neoplasms/diagnostic imaging , Peptides, Cyclic
12.
Medicine (Baltimore) ; 102(24): e33878, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37327310

ABSTRACT

In clinical settings, an estimated 10% differentiated thyroid cancer (DTC) cases become radioactive iodide refractory (RAIR), which lack a molecular marker and have fewer treatment selections. A higher uptake of 18F-fluorodeoxyglucose (18F-FDG) might indicate poor prognosis for DTC. This study aimed to evaluate the clinical value of 18F-FDG psitron emission tomography/computed tomography (PET/CT) for the early diagnosis of RAIR-DTC and high-risk DTC. A total of 68 DTC patients were enrolled and underwent 18F-FDG PET/CT for the detection of recurrence and/or metastasis. 18F-FDG uptake was evaluated in patients with different postoperative recurrence risks or TNM stages and compared between RAIR and non-RAIR-DTC based on its maximum standardized uptake value and tumor/liver (T/L) ratio. The final diagnosis was judged by histopathology and follow-up data. Of 68 DTC cases, 42 were RAIR and 24 non-RAIR, with 2 not determined. A total of 263 of 293 lesions detected on 18F-FDG PET/CT were confirmed to be locoregional or metastatic after follow-up. The T/L ratio was significantly higher for RAIR than for non-RAIR (median 5.18 vs 1.44; P < .01) and also significantly higher in postoperative patients at high-risk of recurrence than at low to medium risk (median 4.90 vs 2.16; P < .01). 18F-FDG PET/CT exhibited a sensitivity of 83.3% and specificity of 87.5% for identifying RAIR, with a cutoff T/L value of 2.98. 18F-FDG PET/CT has the potential to diagnose RAIR-DTC early and identify the high-risk DTC. The T/L ratio is a useful parameter for the detection of RAIR-DTC patients.


Subject(s)
Adenocarcinoma , Thyroid Neoplasms , Humans , Fluorodeoxyglucose F18 , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/radiotherapy , Thyroid Neoplasms/drug therapy , Positron Emission Tomography Computed Tomography , Iodine Radioisotopes/therapeutic use , Tomography, X-Ray Computed , Adenocarcinoma/drug therapy , Thyroglobulin , Positron-Emission Tomography
13.
Chem Biol Interact ; 381: 110575, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37257576

ABSTRACT

Di-ethylhexyl phthalate (DEHP) is used as an important plasticizer in a wide range of products such as paints, food packaging, medical devices and children's toys. In recent years, there has been increasing interest in the toxic effects of DEHP on the male reproductive organs, the testicles. Here, we reviewed the basic pathways of testicular damage caused by DEHP. The mechanism involves oxidative stress, ferroptosis, interfering with hypothalamic-pituitary-gonadal axis (HPGA) and testosterone level. We summarized the protective agents that have been shown to be effective in repairing this type of testicular damage in recent years. This provides a new perspective and direction for future research into the health effects and molecular mechanisms of DEHP.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Testicular Diseases , Child , Male , Humans , Diethylhexyl Phthalate/toxicity , Testis , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Testicular Diseases/chemically induced , Protective Agents/pharmacology , Protective Agents/metabolism
14.
Inorg Chem ; 62(14): 5799-5809, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36974005

ABSTRACT

The capture of the radionuclides strontium and cesium is of great importance to the environment, human health, and the sustainable development of nuclear energy, and zirconium phosphate with excellent ion exchange capacity has potential application in this field. In this work, we organically granulated zirconium phosphate to induce the formation of composite bead materials (CA@ZrP) with a calcium-containing phase with selectivity for Sr2+ and Cs+ higher than that of pure ZrP in low-pH environments and competing ionic environments. The adsorption performance of the material was systematically investigated. It was concluded that the adsorption performance of CA@ZrP improved with an increase in temperature, and under the dynamic adsorption experimental conditions, the treatment capacity of CA@ZrP for Sr2+ and Cs+ reached 404.79 and 302.2 bed volumes, respectively. The systematic study and characterization showed that the generation of the calcium-containing phase [Ca0.55ZrH0.9(PO4)2] promoted the exchange of Ca2+ with Sr2+ and Cs+, thus improving the selectivity of the composite beads. The highly selective composite bead material can be prepared in batches and easily recycled, providing a new idea for practical engineering applications.

15.
Inorg Chem ; 62(11): 4705-4715, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36880867

ABSTRACT

The low efficient transfer of photogenerated electrons to an active catalytic site is a pivotal problem for the photoreduction of highly soluble hexavalent uranium [U(VI)] to low soluble tetravalent uranium [U(IV)]. Herein, we successfully synthesized a TiO2-x/1T-MoS2/reduced graphene oxide heterojunction (T2-xTMR) with dual charge-transfer channels by exploiting the difference in Fermi levels between the heterojunction interfaces, which induced multilevel separation of photogenerated carriers. Theoretical and experimental results demonstrate that the presence of the electron buffer layer promoted the efficient migration of photogenerated electrons between the dual charge-transfer channels, which achieved effective separation of photogenerated carriers in physical/spatial dimensions and significantly extended the lifetime of photogenerated electrons. The migration of photogenerated electrons to the active catalytic site after multilevel spatial separation enabled the T2-xTMR dual co-photocatalyst to remove 97.4% of the high concentration of U(VI) from the liquid-phase system within 80 min. This work provides a practical reference for utilizing multiple co-catalysts to accomplish directed spatial separation of photogenerated carriers.

16.
Front Med (Lausanne) ; 10: 1079165, 2023.
Article in English | MEDLINE | ID: mdl-36844224

ABSTRACT

Objectives: To evaluate COVID-19 vaccines in primary prevention against infections and lessen the severity of illness following the most recent outbreak of the SARS-CoV-2 Omicron variant in Shanghai. Data sources: Data from 153,544 COVID-19 patients admitted to the Shanghai "Four-Leaf Clover" Fangcang makeshift shelter hospital were collected using a structured electronic questionnaire, which was then merged with electronic medical records of the hospital. For healthy controls, data on vaccination status and other information were obtained from 228 community-based residents, using the same structured electronic questionnaire. Methods: To investigate whether inactivated vaccines were effective in protecting against SARS-CoV-2 virus, we estimated the odds ratio (OR) of the vaccination by comparing cases and matched community-based healthy controls. To evaluate the potential benefits of vaccination in lowering the risk of symptomatic infection (vs. asymptomatic), we estimated the relative risk (RR) of symptomatic infections among diagnosed patients. We also applied multivariate stepwise logistic regression analyses to measure the risk of disease severity (symptomatic vs. asymptomatic and moderate/severe vs. mild) in the COVID-19 patient cohort with vaccination status as an independent variable while controlling for potential confounding factors. Results: Of the 153,544 COVID-19 patients included in the analysis, the mean age was 41.59 years and 90,830 were males (59.2%). Of the study cohort, 118,124 patients had been vaccinated (76.9%) and 143,225 were asymptomatic patients (93.3%). Of the 10,319 symptomatic patients, 10,031 (97.2%), 281 (2.7%), and 7 (0.1%) experienced mild, moderate, and severe infections, respectively. Hypertension (8.7%) and diabetes (3.0%) accounted for the majority of comorbidities. There is no evidence that the vaccination helped protect from infections (OR = 0.82, p = 0.613). Vaccination, however, offered a small but significant protection against symptomatic infections (RR = 0.92, p < 0.001) and halved the risk of moderate/severe infections (OR = 0.48, 95% CI: 0.37-0.61). Older age (≥60 years) and malignant tumors were significantly associated with moderate/severe infections. Conclusion: Inactivated COVID-19 vaccines helped provide small but significant protection against symptomatic infections and halved the risk of moderate/severe illness among symptomatic patients. The vaccination was not effective in blocking the SARS-CoV-2 Omicron Variant community spread.

17.
Quant Imaging Med Surg ; 13(1): 370-383, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36620155

ABSTRACT

Background: Respiratory motions may cause artifacts on positron emission tomography (PET) images that degrade image quality and quantification accuracy. This study aimed to evaluate the effect of a respiratory motion-corrected image reconstruction (MCIR) algorithm on image quality and tumor quantification compared with nongated/nonmotion-corrected reconstruction. Methods: We used a phantom consisting of 5 motion spheres immersed in a chamber driven by a motor. The spheres and the background chamber were filled with 18F solution at a sphere-to-background ratio of 5:1. We enrolled 42 and 16 patients undergoing 2-deoxy-2-[18F]fluoro-D-glucose {2-[18F]FDG} and 68Ga-labeled [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-1-Nal3-octreotide {[68Ga]Ga-DOTA-NOC} PET/computed tomography (CT) from whom 74 and 30 lesions were segmented, respectively. Three reconstructions were performed: data-driven gating-based motion correction (DDGMC), external vital signal module-based motion correction (VSMMC), and noncorrection reconstruction. The standardized uptake values (SUVs) and the volume of the spheres and the lesions were measured and compared among the 3 reconstruction groups. The image noise in the liver was measured, and the visual image quality of motion artifacts was scored by radiologists in the patient study. Results: In the phantom study, the spheres' SUVs increased by 26-36%, and the volumes decreased by 35-38% in DDGMC and VSMMC compared with the noncorrection group. In the 2-[18F]FDG PET patient study, the lesions' SUVs had a median increase of 10.87-12.65% while the volumes had a median decrease of 14.88-15.18% in DDGMC and VSMMC compared with those of noncorrection. In the [68Ga]Ga-DOTA-NOC PET patient study, the lesions' SUVs increased by 14.23-15.45%, and the volumes decreased by 19.11-20.94% in DDGMC and VSMMC. The image noise in the liver was equal between the DDGMC, VSMMC, and noncorrection groups. Radiologists found improved image quality in more than 45% of the cases in DDGMC and VSMMC compared with the noncorrection group. There was no statistically significant difference in SUVs, volumes, or visual image quality scores between DDGMC and VSMMC. Conclusions: MCIR improves tumor quantification accuracy and visual image quality by reducing respiratory motion artifacts without compromised image noise performance or elongated acquisition time in 2-[18F]FDG and [68Ga]Ga-DOTA-NOC PET/CT tumor imaging. The performance of DDG-driven MCIR is as good as that of the external device-driven solution.

18.
ACS Appl Mater Interfaces ; 15(3): 4690-4702, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36634206

ABSTRACT

Microencapsulation of paraffin with lead tungstate shell (Pn@PWO) shows the drawbacks of low wettability and poor leakage-proof property and thermal reliability, restricting the application of phase change microcapsules. Herein, a novel paraffin@lead tungstate@silicon dioxide double-shelled microcapsule (Pn@PWO@SiO2) has been successfully constructed by the emulsion-templated interfacial polycondensation and applied in the waterborne polyurethane (WPU). The results indicated that a SiO2 layer with controlled thickness was formed on the PbWO4 shell. The Pn@PWO@SiO2 microcapsules have exhibited superior leakage-proof properties and thermal reliability through double-shelled protection, and the leakage rate decreased by at least 54.11% compared to that of Pn@PWO microcapsules. The SiO2 layer with abundant polar groups ameliorated the wettability of microcapsules and the interfacial compatibility between microcapsules and the WPU matrix. The tensile strength of WPU/Pn@PWO@SiO2-2 composites reached 10.98 MPa, which was over 7 times greater than that of WPU/Pn@PWO composites. In addition, WPU/Pn@PWO@SiO2-2 composites with a latent heat capacity of over 41 J/g exhibited efficient phase change stability and γ-ray shielding properties. Also, the mass attenuation coefficients reached 1.38 cm2/g at 105.3 keV and 1.12 cm2/g at 86.5 keV, respectively. These properties will greatly promote the application of WPU/Pn@PWO@SiO2 composites into γ-ray-shielding devices with thermal regulation.

19.
J Thorac Dis ; 14(9): 3471-3487, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36245581

ABSTRACT

Background: A better understanding of the current features of lung cancer clinical research registration is important for improving registration quality and standardizing the registration. This study aimed to assess the registration quality of lung cancer studies on ClinicalTrials.gov and analyze the influencing factors. Methods: Lung cancer clinical researches registered in the ClinicalTrials.gov database were searched on 7 July 2021. The characteristics of trials that registered up to 7 July 2021 were assessed. The quality of completed and terminated lung cancer studies from 1 July 2007 to 7 July 2020 was assessed using a modified version of the World Health Organization (WHO) Trial Registration Data Set (TRDS, V.1.3.1). Multivariate logistic regression analysis was also used to analyze the factors influencing study registration quality. An above-average registration quality score represented a high registration quality. Results: A total of 6,448 clinical studies on lung cancer were used to summarise the registration characteristics. Most interventional studies were randomized (41.88%), single group (48.07%), and open-label (82.86%) studies, while most observational studies were cohort studies (59.08%). In total, 2,171 completed and terminated studies were assessed, with an average quality score (out of 54) of 36.76±5.69. None of the assessed studies had a 100% modified TRDS reporting rate, and missing summary results were the main factor affecting the quality scores. Multivariate logistic regression analyses showed that prospective registrations [adjusted odds ratio (aOR), 2.18; 95% confidence interval (CI), 1.79-2.65], multi-center studies (aOR, 1.73; 95% CI, 1.39-2.16), government-sponsored studies (aOR, 3.09; 95% CI, 1.48-6.42), and published studies (aOR, 1.43; 95% CI, 1.15-1.78) were more likely to be high quality research. Conclusions: To improve the quality of registration, awareness of prospective registration should be further improved and government investment should be increased. At the same time, more efficient and extensive data sharing after completion of the studies should be actively promoted.

20.
Molecules ; 26(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34770887

ABSTRACT

As the most frequently occurring cancer worldwide, breast cancer (BC) is the leading cause of cancer-related death in women. The overexpression of HER2 (human epidermal growth factor receptor 2) is found in about 15% of BC patients, and it is often associated with a poor prognosis due to the effect on cell proliferation, migration, invasion, and survival. As a result of the heterogeneity of BC, molecular imaging with HER2 probes can non-invasively, in real time, and quantitatively reflect the expression status of HER2 in tumors. This will provide a new approach for patients to choose treatment options and monitor treatment response. Furthermore, radionuclide molecular imaging has the potential of repetitive measurements, and it can help solve the problem of heterogeneous expression and conversion of HER2 status during disease progression or treatment. Different imaging probes of targeting proteins, such as monoclonal antibodies, antibody fragments, nanobodies, and affibodies, are currently in preclinical and clinical development. Moreover, in recent years, HER2-specific peptides have been widely developed for molecular imaging techniques for HER2-positive cancers. This article summarized different types of molecular probes targeting HER2 used in current clinical applications and the developmental trend of some HER2-specific peptides.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/diagnosis , Molecular Imaging/methods , Molecular Probes , Peptides , Radionuclide Imaging/methods , Receptor, ErbB-2/metabolism , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Clinical Trials as Topic , Female , Humans , Immunoconjugates , Isotope Labeling , Peptides/chemistry , Positron-Emission Tomography , Radioisotopes , Recombinant Fusion Proteins , Tomography, Emission-Computed, Single-Photon
SELECTION OF CITATIONS
SEARCH DETAIL
...