Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Chem Commun (Camb) ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39308348

ABSTRACT

Smart aqueous two-phase systems (ATPSs) were fabricated using ferrocenyl and benzyl-modified poly(ionic liquid)s for the first time. The novel ATPSs were found to be pH-sensitive. The upper phase and lower phase could be inverted reversibly by adjusting the pH value of the ATPSs.

2.
Plant J ; 115(6): 1528-1543, 2023 09.
Article in English | MEDLINE | ID: mdl-37258460

ABSTRACT

Despite the importance of hybridization in evolution, the evolutionary consequence of homoploid hybridizations in plants remains poorly understood. Specially, homoploid hybridization events have been rarely documented due to a lack of genomic resources and methodological limitations. Actinidia zhejiangensis was suspected to have arisen from hybridization of Actinidia eriantha and Actinidia hemsleyana or Actinidia rufa. However, this species was very rare in nature and exhibited sympatric distribution with its potential parent species, which implied it might be a spontaneous hybrid of ongoing homoploid hybridization. Here, we illustrate the dead-end homoploid hybridization and genomic basis of isolating barriers between A. eriantha and A. hemsleyana through whole genome sequencing and population genomic analyses. Chromosome-scale genome assemblies of A. zhejiangensis and A. hemsleyana were generated. The chromosomes of A. zhejiangensis are confidently assigned to the two haplomes, and one of them originates from A. eriantha and the other originates from A. hemsleyana. Whole genome resequencing data reveal that A. zhejiangensis are mainly F1 hybrids of A. hemsleyana and A. eriantha and gene flow initiated about 0.98 million years ago, implying both strong genetic barriers and ongoing hybridization between these two deeply divergent kiwifruit species. Five inversions containing genes involved in pollen germination and pollen tube growth might account for the fertility breakdown of hybrids between A. hemsleyana and A. eriantha. Despite its distinct morphological traits and long recurrent hybrid origination, A. zhejiangensis does not initiate speciation. Collectively, our study provides new insights into homoploid hybridization in plants and provides genomic resources for evolutionary and functional genomic studies of kiwifruit.


Subject(s)
Actinidia , Actinidia/genetics , Actinidia/metabolism , Hybridization, Genetic , Genome , Genomics , Plants/genetics , Genetic Speciation
SELECTION OF CITATIONS
SEARCH DETAIL