Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Int J Lab Hematol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712479

ABSTRACT

BACKGROUND: In this study, we combined two techniques, ultrasound-guided needle biopsy and flow cytometry (FCM), to explore their value in patients with enlarged lymph nodes. METHODS: We compared the results of 198 needle biopsies on FCM and pathology. Forty-two were done by (fine needle aspiration, FNA), and the remaining 156 with (core needle biopsy, CNB), in 36 of 156 patients, a FNA was performed in the same lymph node after completion of the CNB. Except for five types of pathological entities, the rest were differentiated only detected or undetected tumours as the outcome distinction. RESULTS: Among the 198 needle biopsies, 13 were inadequate specimens, while the remaining 185 had pathological findings, including 47 benign and 138 neoplastic findings. Thirty-six patients underwent puncture with both FNA and CNB, both needles produced identical results by FCM, but more cells were obtained by FNA. Among the pathologically positive results, there were 23 missed diagnoses in FCM, in contrast, evidence of tumours was observed in the FCM images of 15 needle biopsies that reported benign or findings that were inconsistent with pathology, and the final diagnosis was consistent with the FCM in 10 cases. FCM detected haematolymphoid tumours with a sensitivity of 87.8% and a specificity of 91.9%. CONCLUSION: The combination of FCM and ultrasound-guided lymph node needle biopsy can quickly provide guidance for clinical decision-making. We recommend that all lymph node needle biopsies be sent for FCM, the specimen can be obtained by the last puncture with FNA.

2.
Cell Discov ; 10(1): 5, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191529

ABSTRACT

Although CD19-specific chimeric antigen receptor (CAR) T cells are curative for patients with relapsed or refractory large B-cell lymphoma (R/R LBCL), disease relapse with tumor antigen-positive remains a challenge. Cytokine/chemokine-expressing CAR-T cells could overcome a suppressive milieu, but the clinical safety and efficacy of this CAR-T therapy remain unclear. Here we report the preclinical development of CD19-specific CAR-T cells capable of expressing interleukin (IL)-7 and chemokine (C-C motif) ligand (CCL)-19 upon CD19 engagement (referred to as 7 × 19 CAR-T cells) and results from a phase 1 and expansion phase trial of 7 × 19 CAR-T cell therapy in patients with R/R LBCL (NCT03258047). In dose-escalation phase, there were no dose-limiting toxicities observed. 39 patients with R/R LBCL received 7 × 19 CAR-T with doses ranged from 0.5 × 106-4.0 × 106 cells per kg body weight. Grade 3 cytokine release syndrome occurred in 5 (12.8%) patients and ≥ grade 3 neurotoxicity in 4 (10.3%) patients. The overall response rate at 3 months post-single infusion was 79.5% (complete remission, 56.4%; partial response, 23.1%). With a median follow-up of 32 months, the median progression-free survival was 13 months, and median overall survival was not reached, with an estimated rate of 53.8% (95% CI, 40.3% to 72.0%) at two years. Together, these long-term follow-up data from the multicenter clinical study suggest that 7 × 19 CAR-T cells can induce durable responses with a median overall survival of greater than 2 years, and have a manageable safety profile in patients with R/R LBCL.

3.
J Psychiatr Res ; 171: 60-68, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244334

ABSTRACT

OBJECTIVE: Bipolar disorder (BD) is often misdiagnosed as major depressive disorder (MDD) in the early stage, which may lead to inappropriate treatment. This study aimed to characterize the alterations of spontaneous neuronal activity in patients with depressive episodes whose diagnosis transferred from MDD to BD. METHODS: 532 patients with MDD and 132 healthy controls (HCs) were recruited over 10 years. During the follow-up period, 75 participants with MDD transferred to BD (tBD), and 157 participants remained with the diagnosis of unipolar depression (UD). After excluding participants with poor image quality and excessive head movement, 68 participants with the diagnosis of tBD, 150 participants with the diagnosis of UD, and 130 HCs were finally included in the analysis. The dynamic amplitude of low-frequency fluctuations (dALFF) of spontaneous neuronal activity was evaluated in tBD, UD and HC using functional magnetic resonance imaging at study inclusion. Receiver operating characteristic (ROC) analysis was performed to evaluate sensitivity and specificity of the conversion prediction from MDD to BD based on dALFF. RESULTS: Compared to HC, tBD exhibited elevated dALFF at left premotor cortex (PMC_L), right lateral temporal cortex (LTC_R) and right early auditory cortex (EAC_R), and UD showed reduced dALFF at PMC_L, left paracentral lobule (PCL_L), bilateral medial prefrontal cortex (mPFC), right orbital frontal cortex (OFC_R), right dorsolateral prefrontal cortex (DLPFC_R), right posterior cingulate cortex (PCC_R) and elevated dALFF at LTC_R. Furthermore, tBD exhibited elevated dALFF at PMC_L, PCL_L, bilateral mPFC, bilateral OFC, DLPFC_R, PCC_R and LTC_R than UD. In addition, ROC analysis based on dALFF in differential areas obtained an area under the curve (AUC) of 72.7%. CONCLUSIONS: The study demonstrated the temporal dynamic abnormalities of tBD and UD in the critical regions of the somatomotor network (SMN), default mode network (DMN), and central executive network (CEN). The differential abnormal patterns of temporal dynamics between the two diseases have the potential to predict the diagnosis transition from MDD to BD.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Humans , Brain/diagnostic imaging , Prefrontal Cortex , Gyrus Cinguli , Magnetic Resonance Imaging/methods
5.
Cogn Neurodyn ; 17(6): 1609-1619, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37974586

ABSTRACT

The diagnosis of bipolar disorders (BD) mainly depends on the clinical history and behavior observation, while only using clinical tools often limits the diagnosis accuracy. The study aimed to create a novel BD diagnosis framework using multilayer modularity in the dynamic minimum spanning tree (MST). We collected 45 un-medicated BD patients and 47 healthy controls (HC). The sliding window approach was utilized to construct dynamic MST via resting-state functional magnetic resonance imaging (fMRI) data. Firstly, we used three null models to explore the effectiveness of multilayer modularity in dynamic MST. Furthermore, the module allegiance exacted from dynamic MST was applied to train a classifier to discriminate BD patients. Finally, we explored the influence of the FC estimator and MST scale on the performance of the model. The findings indicated that multilayer modularity in the dynamic MST was not a random process in the human brain. And the model achieved an accuracy of 83.70% for identifying BD patients. In addition, we found the default mode network, subcortical network (SubC), and attention network played a key role in the classification. These findings suggested that the multilayer modularity in dynamic MST could highlight the difference between HC and BD patients, which opened up a new diagnostic tool for BD patients. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-022-09907-x.

6.
Brain Res Bull ; 202: 110754, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37683703

ABSTRACT

BACKGROUND: Major depressive disorder (MDD), a common mental disorder worldwide, frequently coexists with various physical illnesses, and recent studies have shown an increased prevalence of subclinical hypothyroidism (SHypo) among MDD patients. However, the neural mechanisms shared and unique to these disorders and the associated alterations in brain function remain largely unknown. This study investigated the potential brain function mechanisms underlying comorbid MDD and SHypo. METHOD: Thirty MDD patients (non-comorbid group), 30 MDD patients comorbid with SHypo (comorbid group), 26 patients with SHypo, and 30 healthy controls were recruited for resting-state functional magnetic resonance imaging (rs-fMRI). We used regional homogeneity (ReHo) to examine differences in internal cerebral activity across the four groups. RESULTS: Compared with the non-comorbid group, the comorbid group exhibited significantly higher ReHo values in the right orbital part of the middle frontal gyrus (ORBmid) and bilateral middle frontal gyrus; decreased ReHo values in the right middle temporal gyrus, right thalamus, and right superior temporal gyrus, and right insula. Within the comorbid group, serum TSH levels were negatively associated with the ReHo values of the right insula; the ReHo values of the right Insula were negatively associated with the retardation factor score; the ReHo values of the right ORBmid were positively correlated with the anxiety/somatization factor scores. CONCLUSIONS: These findings provide valuable clues for exploring the shared neural mechanisms between MDD and SHypo and have important implications for understanding the pathophysiological mechanisms of the comorbidity of the two disorders.


Subject(s)
Depressive Disorder, Major , Hypothyroidism , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/epidemiology , Comorbidity , Hypothyroidism/complications , Hypothyroidism/diagnostic imaging , Hypothyroidism/epidemiology , Frontal Lobe , Temporal Lobe
7.
J Affect Disord ; 340: 751-757, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37597781

ABSTRACT

BACKGROUND: Magnetoencephalography (MEG) could explore and resolve brain signals with realistic temporal resolution to investigate the underlying electrophysiology of major depressive disorder (MDD) and the treatment efficacy. Here, we explore whether neuro-electrophysiological features of MDD at baseline can be used as a neural marker to predict their early antidepressant response. METHODS: Sixty-six medication-free patients with MDD and 48 healthy controls were enrolled and underwent resting-state MEG scans. Hamilton depression rating scale (HAMD-17) was assessed at both baseline and after two-week pharmacotherapy. We measured local and large-scale resting-state oscillatory dysfunctions with a data-driven model, the Fitting Oscillations & One-Over F algorithm. Then, we quantified band-limited regional power and functional connectivity between brain regions. RESULTS: After two-week follow-up, 52 patients completed the re-interviews. Thirty-one patients showed early response (ER) to pharmacotherapy and 21 patients did not. Treatment response was defined as at least 50 % reduction of severity reflected by HAMD-17. We observed decreased regional periodic power in patients with MDD comparing to controls. However, patients with ER exhibited that functional couplings across brain regions in both alpha and beta band were increased and significantly correlated with severity of depressive symptoms after treatment. Receiver operating characteristic curves (ROC) further confirmed the predictive ability of baseline large-scale functional connectivity for early antidepressant efficacy (AUC = 0.9969). LIMITATIONS: Relatively small sample size and not a double-blind design. CONCLUSIONS: The current study demonstrated the electrophysiological dysfunctions of local neural oscillatory related with depression and highlighted the identification ability of large-scale couplings biomarkers in early antidepressant response prediction.


Subject(s)
Depressive Disorder, Major , Humans , Algorithms , Antidepressive Agents/therapeutic use , Brain/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy
8.
Front Aging Neurosci ; 15: 1106792, 2023.
Article in English | MEDLINE | ID: mdl-36845662

ABSTRACT

Introduction: To explore the association between regional gray matter volume (GMV) and cognitive impairments and ascertain whether the regional brain alterations related to cognitive impairments occur in major depressive disorder (MDD) patients with comorbid subclinical hypothyroidism (SHypo). Methods: We enrolled 32 MDD patients, 32 MDD patients with comorbid SHypo, and 32 normal controls and subjected them to thyroid function tests, neurocognitive tests, and magnetic resonance imaging (MRI). Using voxel-based morphometry (VBM) analysis, we examined the pattern of gray matter (GM) in these participants. We also used ANOVA to detect group differences and partial correlation to explore the potential association between GMV alterations and cognitive tests in comorbid patients. Results: The comorbid patients exhibited significantly smaller GMV in the right middle frontal gyrus (MFG) than the non-comorbid group. Furthermore, the partial correlation analysis showed that GMV of the right MFG was associated with poor executive function (EF) performance in comorbid patients. Conclusion: These findings provide valuable insight into the relationship between the alteration of GMV and cognitive dysfunction of MDD patients with comorbid SHypo.

9.
Hum Brain Mapp ; 44(7): 2767-2777, 2023 05.
Article in English | MEDLINE | ID: mdl-36852459

ABSTRACT

Bipolar disorder (BD) is associated with marked suicidal susceptibility, particularly during a major depressive episode. However, the evaluation of suicidal risk remains challenging since it relies mainly on self-reported information from patients. Hence, it is necessary to complement neuroimaging features with advanced machine learning techniques in order to predict suicidal behavior in BD patients. In this study, a total of 288 participants, including 75 BD suicide attempters, 101 BD nonattempters and 112 healthy controls, underwent a resting-state functional magnetic resonance imaging (rs-fMRI). Intrinsic brain activity was measured by amplitude of low-frequency fluctuation (ALFF). We trained and tested a two-level k-nearest neighbors (k-NN) model based on resting-state variability of ALFF with fivefold cross-validation. BD suicide attempters had increased dynamic ALFF values in the right anterior cingulate cortex, left thalamus and right precuneus. Compared to other machine learning methods, our proposed framework had a promising performance with 83.52% accuracy, 78.75% sensitivity and 87.50% specificity. The trained models could also replicate and validate the results in an independent cohort with 72.72% accuracy. These findings based on a relatively large data set, provide a promising way of combining fMRI data with machine learning technique to reliably predict suicide attempt at an individual level in bipolar depression. Overall, this work might enhance our understanding of the neurobiology of suicidal behavior by detecting clinically defined disruptions in the dynamics of instinct brain activity.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Suicide , Humans , Suicidal Ideation , Gyrus Cinguli
10.
Virol Sin ; 38(1): 128-141, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36509386

ABSTRACT

Influenza A virus (IAV), responsible for seasonal epidemics and recurring pandemics, represents a global threat to public health. Given the risk of a potential IAV pandemic, it is increasingly important to better understand virus-host interactions and develop new anti-viral strategies. Here, we reported nonmuscle myosin IIA (MYH9)-mediated regulation of IAV infection. MYH9 depletion caused a profound inhibition of IAV infection by reducing viral attachment and internalization in human lung epithelial cells. Surprisingly, overexpression of MYH9 also led to a significant reduction in viral productive infection. Interestingly, overexpression of MYH9 retained viral attachment, internalization, or uncoating, but suppressed the viral ribonucleoprotein (vRNP) activity in a minigenome system. Further analyses found that excess MYH9 might interrupt the formation of vRNP by interacting with the viral nucleoprotein (NP) and result in the reduction of the completed vRNP in the nucleus, thereby inhibiting subsequent viral RNA transcription and replication. Together, we discovered that MYH9 can interact with IAV NP protein and engage in the regulation of vRNP complexes, thereby involving viral replication. These findings enlighten new mechanistic insights into the complicated interface of host-IAV interactions, ultimately making it an attractive target for the generation of antiviral drugs.


Subject(s)
Influenza A virus , Influenza, Human , Nonmuscle Myosin Type IIA , Humans , Host-Pathogen Interactions , Influenza A virus/genetics , Influenza, Human/genetics , Lung , Nonmuscle Myosin Type IIA/metabolism , Nucleoproteins , Nucleotidyltransferases/metabolism , Virus Internalization , Virus Replication/physiology
11.
J Affect Disord ; 321: 8-15, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36181913

ABSTRACT

BACKGROUND: Unipolar depression (UD) and bipolar depression (BD) showed convergent and divergent cognitive impairments. Neural oscillations are linked to the foundational cognitive processes. We aimed to investigate the underpinning spectral neuronal power patterns by magnetoencephalography (MEG), which combinates high spatial and temporal resolution. We hypothesized that patients with UD and BD exhibit common and distinct patterns, which may contribute to their cognitive impairments. METHODS: Group cognitive tests were performed. Eyes closed resting-state MEG data were collected from 61 UD, 55 BD, and 52 healthy controls (HC). Nonparametric cluster-based permutation tests were performed to deal with the multiple comparison problem on channel-frequency MEG data. Correlation analysis of cognitive dysfunction scores and MEG oscillation were conducted by Spearman or partial correlation analysis. RESULTS: Wisconsin Card Sorting Test showed similar cognitive impairment in patients with UD and BD. Moreover, patients with BD exhibited extensive cognitive deficits in verbal executive functions and visuospatial processing. Compare to HC, both patients with UD and BD showed increased frontal-central beta power while high gamma power was decreased in UD groups during the resting-state. The significant correlations between cognitive function and average beta power were observed. CONCLUSIONS: Patients with BD had more cognitive impairments on different dimensions than those with UD, involving disrupted beta power modulations. Our investigation provides a better understanding of the neuroelectrophysiological process underlying cognitive impairments in patients with UD and BD.


Subject(s)
Bipolar Disorder , Cognitive Dysfunction , Humans , Bipolar Disorder/psychology , Magnetoencephalography , Brain , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/diagnosis
12.
Psychiatry Clin Neurosci ; 77(1): 20-29, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36207792

ABSTRACT

AIM: Major depressive disorder (MDD) is associated with high suicidality, especially for those with suicide attempt (SA). Although impaired oscillatory activity has been previously reported in patients with SA, little is known about precise temporal-spatial variability of its neural dynamics. To solve this, the current study probed the spectral power and network interactions underlying SA in MDD. METHODS: The present study recruited 104 subjects including 56 subjects with MDD (30 with SA and 26 without SA) and 48 healthy controls, who performed sad expressions recognition task during magnetoencephalography (MEG) recording. By investigating source-reconstructed MEG-data, brain states representing different task stages were estimated from a Hidden Markov model. Spectrum power and network connectivity were compared via Gaussian Mixture Models, and fractional occupancy (FO) of states were compared via an independent F-test. RESULTS: Brain states were corresponding to various frequencies (theta/beta/low gamma/ high gamma). In low gamma band (35-45 Hz), the early visual state exhibited increased activation and hyper inter-network connectivity between visual regions and the limbic system, while the middle fronto-parietal state exhibited attenuated activation and decreased intra-network connectivity within fronto-parietal regions in SA group. Crucially, FO values of these two states were significantly correlated with the suicide risks. CONCLUSIONS: Suicide behavior of patients with MDD was significantly associated with aberrant oscillations in low gamma band. Elevated oscillations in occipital cortices and attenuated oscillations in fronto-parietal cortices were significantly associated with SA. Manifesting sadness indulging and reckless decision-making, the hampered temporal characteristics could help explain the neural-electric basis of SA.


Subject(s)
Depressive Disorder, Major , Humans , Sadness , Suicide, Attempted , Brain/physiology , Magnetoencephalography , Emotions
13.
BMC Genomics ; 23(1): 697, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36209057

ABSTRACT

BACKGROUND: Recently, Zika virus (ZIKV) re-emerged in India and was potentially associated with microcephaly. However, the molecular mechanisms underlying ZIKV pathogenesis remain to be explored. RESULTS: Herein, we performed a comprehensive RNA-sequencing analysis on ZIKV-infected JEG-3, U-251 MG, and HK-2 cells versus corresponding uninfected controls. Combined with a series of functional analyses, including gene annotation, pathway enrichment, and protein-protein interaction (PPI) network analysis, we defined the molecular characteristics induced by ZIKV infection in different tissues and invasion time points. Data showed that ZIKV infection and replication in each susceptible organ commonly stimulated interferon production and down-regulated metabolic-related processes. Also, tissue-specific immune responses or biological processes (BPs) were induced after ZIKV infection, including GnRH signaling pathway in JEG-3 cells, MAPK signaling pathway in U-251 MG cells, and PPAR signaling pathway in HK-2 cells. Of note, ZIKV infection induced delayed antiviral interferon responses in the placenta-derived cell lines, which potentially explains the molecular mechanism by which ZIKV replicates rapidly in the placenta and subsequential vertical transmission occurs. CONCLUSIONS: Together, these data may provide a systemic insight into the pathogenesis of ZIKV infection in distinct human tissue-derived cell lines, which is likely to help develop prophylactic and therapeutic strategies against ZIKV infection.


Subject(s)
Zika Virus Infection , Zika Virus , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Cell Line, Tumor , Gonadotropin-Releasing Hormone/metabolism , Humans , Interferons/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , RNA/metabolism , Transcriptome , Virus Replication , Zika Virus/genetics , Zika Virus Infection/genetics
14.
J Affect Disord ; 314: 168-175, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35820473

ABSTRACT

BACKGROUND: One devastating outcome of major depressive disorder (MDD) is high suicidality, especially for patients with suicide attempt (SA). Evidence indicated that SA may be strongly associated with inhibitory control deficits. We hypothesized that the inhibition function deficits of patient with SA might be underpinned by abnormal neuronal oscillations. METHODS: Our study recruited 111 subjects including 74 patients and 37 controls, who performed a GO/NOGO task during magnetoencephalography recording. Time-frequency-representations and phase-amplitude-coupling were measured for the brain circuits involved in the inhibitory function. Phase-slope-indexes were calculated between regions to determine the direction of power flow. RESULTS: Significant increased reaction time and decreased judgment accuracy were observed in SA group. During the perception stage of GO task (approximately 125 ms), SA group manifested elevated alpha power in ventral prefrontal cortex (VPFC) and attenuated beta power in dorsal anterior cingulate (dACC) compared with other groups (p < 0.01). In the processing stage of NOGO task (approximately 300 ms), they showed decreased beta power in VPFC and increased alpha power in dACC (p < 0.01). Alpha-beta decoupling during both tasks was observed in SA group. Furthermore, the decoupling from VPFC to dACC under NOGO tasks was significantly correlated with suicide risk level. LIMITATIONS: The number of participants was relatively small, and psychological elements were not involved in current study. CONCLUSION: Dysregulated oscillatory activities of dACC and VPFC suggested deficits in execution and inhibition functions triggering high suicide risks. The alpha-beta decoupling from VPFC to dACC could be served as a neuro-electrophysiological biomarker for identifying potential suicide risk.


Subject(s)
Depressive Disorder, Major , Humans , Inhibition, Psychological , Magnetoencephalography , Reaction Time , Suicide, Attempted
15.
mSphere ; 7(4): e0021122, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35862802

ABSTRACT

The innate interferon (IFN) response constitutes the first line of host defense against viral infections. It has been shown that IFN-I/III treatment could effectively contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication in vitro. However, how SARS-CoV-2 survives through the innate antiviral mechanism remains to be explored. Our study uncovered that human angiotensin-converting enzyme 2 (ACE2), identified as a primary receptor for SARS-CoV-2 entry, can disturb the IFN-I signaling pathway during SARS-CoV-2 infection in human lung cells. We identified that ACE2 was significantly upregulated by SARS-CoV-2 and Sendai virus (SeV) infection, and exogenous expression of ACE2 suppressed IFN-I production in a dose-dependent manner. Mechanistically, ACE2 disrupted poly (I:C)-mediated inhibition of SARS-CoV2 replication by antagonizing IFN-I production by blocking IRF3 phosphorylation and nuclear translocation. Moreover, ACE2 quenched the IFN-mediated antiviral immune response by degrading endogenous STAT2 protein, inhibiting STAT2 phosphorylation and nuclear translocation. Interestingly, IFN-inducible short ACE2 (dACE2 or MIRb-ACE2) can also be induced by virus infection and inhibits the IFN signaling. Thus, our findings provide mechanistic insight into the distinctive role of ACE2 in promoting SARS-CoV-2 infection and enlighten us that the development of interventional strategies might be further optimized to interrupt ACE2-mediated suppression of IFN-I and its signaling pathway. IMPORTANCE Efficient antiviral immune responses against SARS-CoV-2 infection play a key role in controlling the coronavirus diseases 2019 (COVID-19) caused by this virus. Although SARS-CoV-2 has developed strategies to counteract the IFN-I signaling through the virus-derived proteins, our knowledge of how SARS-CoV-2 survives through the innate antiviral mechanism remains poor. We herein discovered the distinctive role of ACE2 as a restraining factor of the IFN-I signaling in facilitating SARS-CoV-2 infection in human lung cells. Both full-length ACE2 and truncated dACE2 can antagonize IFN-mediated antiviral response. These findings are key to understanding the counteraction between SARS-CoV-2 pathogenicity and the host antiviral defenses.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Interferon Type I , Signal Transduction , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , Humans , Interferon Type I/immunology , RNA, Viral , SARS-CoV-2
16.
J Affect Disord ; 298(Pt A): 151-159, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34715183

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is often accompanied with classic diurnal mood variation (DMV) symptoms. Patients with DMV symptoms feel a mood improvement and prefer activities at dusk or in the evening, which is consistent with the evening chronotype. Their neural alterations are unclear. In this study, we aimed to explore the neuropathological mechanisms underlying the circadian rhythm of mood and the association with chronotype in MDD. METHODS: A total of 126 depressed patients, including 48 with DMV, 78 without, and 67 age/gender-matched healthy controls (HC) were recruited and underwent a resting-state functional magnetic resonance imaging. Spontaneous neural activity was investigated using amplitude of low-frequency fluctuation (ALFF) and region of interest (ROI)-based functional connectivity (FC) analyses were conducted. The Morningness-Eveningness Questionnaire (MEQ) was utilized to evaluate participant chronotypes and Pearson correlations were calculated between altered ALFF/FC values and MEQ scores in patients with MDD. RESULTS: Compared with NMV, DMV group exhibited lower MEQ scores, and increased ALFF values in the right orbital superior frontal gyrus (oSFG). We observed that increased FC between the left suprachiasmatic nucleus (SCN) and supramarginal gyrus (SMG). ALFF in the oSFG and FC of rSCN-SMG were negatively correlated with MEQ scores. LIMITATION: Some people's chronotypes information is missing. CONCLUSION: Patients with DMV tended to be evening type and exhibited abnormal brain functions in frontal lobes. The synergistic changes between frontotemporal lobe, SCN-SMG maybe the characteristic of patients with DMV symptoms.


Subject(s)
Depressive Disorder, Major , Brain/diagnostic imaging , Brain Mapping , Circadian Rhythm , Depressive Disorder, Major/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neuroimaging
17.
Article in English | MEDLINE | ID: mdl-34780814

ABSTRACT

BACKGROUND: Precise suicide risk evaluation struggled in Major depressive disorder (MDD), especially for patients with only suicidal-ideation (SI) but without suicide attempt (SA). MDD patients have deficits in negative emotion processing, which is associated with the generation of SI and SA. Given the critical role of gamma oscillations in negative emotion processing, we hypothesize that the transition from SI to SA in MDD could be characterized by abnormal gamma interactions. METHODS: We recruited 162 participants containing 106 MDD patients and 56 healthy controls (HCs). Participants performed facial recognition tasks while magnetoencephalography data were recorded. Time-frequency-representation (TFR) analysis was conducted to identify the dominant spectra differences between MDD and HCs, and then source analysis was applied to localize the region of interests. Furthermore, frequency-specific functional connectivity network were constructed and a semi-supervised clustering algorithm was utilized to predict potential suicide risk. RESULTS: Gamma (50-70 Hz) power was found significantly increased in MDD, mainly residing in regions from fronto-parietal-control-network (FPN), visual-network (VN), default-mode-network (DMN) and salience-network (SN). Based on impaired gamma functional connectivity network between well-established SA group and non-SI group, semi-supervised algorithm clustered patients with only SI into two groups with different suicide risks. Moreover, Inter-network gamma connectivity between FPN and DMN significantly negatively correlated with suicide risk and not confounded by depression severity. CONCLUSION: Inter-network gamma connectivity with FPN and DMN might be the key neuropathological interactions underling the progression from SI to SA. By applying semi-supervised clustering to electrophysiological data, it is possible to predict individual suicide risk.


Subject(s)
Default Mode Network , Depressive Disorder, Major/complications , Facial Recognition , Suicidal Ideation , Suicide, Attempted/statistics & numerical data , Visual Pathways , Adult , Algorithms , Female , Gamma Rays , Humans , Magnetoencephalography , Male
18.
J Magn Reson Imaging ; 56(1): 282-290, 2022 07.
Article in English | MEDLINE | ID: mdl-34870351

ABSTRACT

BACKGROUND: Combining genetic variants with neuroimaging phenotypes may facilitate understanding of the biological mechanisms for the etiology and pharmacology of antidepressant treatment of major depressive disorder (MDD). PURPOSE: To explore the latent pathway of dopamine gene-hierarchical brain network-antidepressant treatment. STUDY TYPE: Retrospective. POPULATION: One hundred and sixty-eight MDD inpatients divided into responders (N = 98) or nonresponders (N = 70) based on the treatment outcome of antidepressant. FIELD STRENGTH/SEQUENCE: Diffusion tensors imaging and resting-state functional magnetic resonance imaging at 3.0T using echo-planar sequence. ASSESSMENT: Four genetic variations of the dopamine receptor D1 (DRD1) were genotyped. Strengths of rich-club, feeder, and local connections were calculated based on the rich-club organizations of structural and functional brain networks at baseline and following 4 weeks of selective serotonin reuptake inhibitor (SSRI) therapy. STATISTICAL TESTS: Logistic and linear regressions were used to analyze the impact of DRD1 multilocus genetic profile score on the treatment response of SSRI, and their associations with strengths of rich-club, feeder, and local connections. Mediation models were developed to explore the mediation role of rich-club organizations on the relationship between DRD1 and SSRI therapy response. A P value <0.05 was considered to be statistically significant. RESULTS: Multiple genetic variations of DRD1 were significantly related to the strengths of feeder connections both in structural and functional networks, and to the treatment response of SSRI. Furthermore, the strength of the structural feeder connection significantly modulated the effect of DRD1 variants on SSRI treatment outcome. DATA CONCLUSION: DRD1 displayed close connections both with SSRI treatment outcome and rich-club organizations of structural and functional data. Moreover, structural feeder connection played a mediating role in the relationship between DRD1 and antidepressant therapy. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 4.


Subject(s)
Antidepressive Agents , Depressive Disorder, Major , Multiparametric Magnetic Resonance Imaging , Receptors, Dopamine D1 , Antidepressive Agents/therapeutic use , Brain/pathology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Genetic Variation , Humans , Receptors, Dopamine D1/genetics , Retrospective Studies
19.
CNS Neurosci Ther ; 28(3): 401-410, 2022 03.
Article in English | MEDLINE | ID: mdl-34953030

ABSTRACT

AIMS: The diversity of treatment outcomes for major depressive disorder (MDD) remains uncertain in neuropathology. The current study aimed at exploring electrophysiological biomarkers associated with treatment response. METHODS: The present study recruited 130 subjects including 100 MDD patients and 30 healthy controls. All subjects participated in a sad expression recognition task while their magnetoencephalography data were recorded. Patients who had a reduction of at least 50% in disorder severity at endpoint (>2 weeks) were considered as responders. Within-frequency power and phase-amplitude coupling were measured for the brain regions involved in the emotional visual information processing pathways. RESULTS: The significant alpha-gamma decoupling from the right thalamus to the right amygdala in unconscious processing and from right orbital frontal cortices to the right amygdala in conscious processing was found in non-responders relative to responders and healthy controls. These kinds of dysregulation could also predict the potential treatment response. CONCLUSION: The attenuated alpha-gamma coupling in dual pathways indicated increased sensitivity to the negative emotional information and reduced moderated effect of the amygdala, which might cause insensitivity to antidepressant treatment and could be regarded as potential neural mechanisms for treatment response prediction.


Subject(s)
Depressive Disorder, Major , Amygdala , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Brain Mapping , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Emotions/physiology , Humans , Magnetic Resonance Imaging
20.
Front Endocrinol (Lausanne) ; 12: 779693, 2021.
Article in English | MEDLINE | ID: mdl-34887837

ABSTRACT

The present study was aimed to investigate the relationships between serum thyroid hormones (THs), frontal gray matter volume, and executive function in selected patients with major depressive disorder (MDD). One hundred and four MDD patients and seventy-five healthy controls (HCs) were subjected to thyroid-stimulating hormone (TSH), free Triiodothyronine (fT3), free Thyroxine (fT4), and executive function tests and underwent structural magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) analysis was performed to compare group differences in the gray matter for the frontal lobe. Furthermore, mediation analysis was used to investigate whether gray matter volumes of the frontal gyrus mediated the relationship between serum THs and executive function in MDD patients. MDD patients exhibited significant gray matter volume reduction in several brain regions, including the left rectus, right middle frontal cortex, and left middle frontal cortex. Serum TSH levels are positively associated with altered regional gray matter volume patterns within MFG and executive function. Importantly, gray matter in the right MFG was a significant mediator between serum TSH levels and executive function. These findings expand our understanding of how thyroid function affects brain structure changes and executive function in MDD patients.


Subject(s)
Cerebral Cortex/diagnostic imaging , Depressive Disorder, Major/blood , Depressive Disorder, Major/diagnostic imaging , Executive Function/physiology , Gray Matter/diagnostic imaging , Thyroid Gland/diagnostic imaging , Adult , Cerebral Cortex/metabolism , Cross-Sectional Studies , Depressive Disorder, Major/psychology , Female , Gray Matter/metabolism , Humans , Magnetic Resonance Imaging/methods , Male , Psychiatric Status Rating Scales , Thyroid Gland/metabolism , Thyroid Hormones/blood , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...