Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
J Asian Nat Prod Res ; : 1-8, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758009

ABSTRACT

Macrophorins H (4) and L (5), two rare HMG-conjugate macrophorins along with three known macrophorins (1-3), three DMOA-derived meroterpenoids (6-8) and two ergosterol derivates (9-10) were isolated from sterilized rice medium cultured Penicillium sp. NX-05-G-3. Their structures were elucidated by 1D and 2D NMR. The cytotoxicities of all compounds were evaluated, and compounds 1 and 2 showed extensive cytotoxicity against human cancer cell lines Hela, SCC15, MDA-MB-453 and A549, with IC50 values ranging from 17.6 to 32.8 µM.

2.
Org Lett ; 26(15): 3304-3309, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38587334

ABSTRACT

A facile and efficient radical tandem vinylogous aldol and intramolecular [2 + 2] cycloaddition reaction for direct synthesis of cyclobutane-containing benzocyclobutenes (BCBs) under extremely mild conditions without using any photocatalysts is reported. This approach exhibited definite compatibility with functional groups and afforded new BCBs with excellent regioselectivity and high yields. Moreover, detailed mechanism studies were carried out both experimentally and theoretically. The readily accessible, low-cost, and ecofriendly nature of the developed strategy will endow it with attractive applications in organic and medicinal chemistry.

3.
Mol Divers ; 28(1): 125-131, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36881209

ABSTRACT

Copper-catalyzed selective alkynylation with N-propargyl carboxamides as nucleophiles has been successfully developed for the synthesis of C2-functionalized chromanones. Under optimized reaction conditions, 21 examples were obtained in one-pot procedure through 1,4-conjugate addition. This protocol features readily available feedstocks, easy operations, and moderate to good yields, which provides viable access to pharmacologically active C2-functionalized chromanones.


Subject(s)
Chromones , Copper , Molecular Structure , Catalysis
4.
Molecules ; 28(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38005323

ABSTRACT

An efficient and direct approach to pyrroles was successfully developed by employing 3-formylchromones as decarboxylative coupling partners, and facilitated by microwave irradiation. The protocol utilizes easily accessible feedstocks, a catalytic amount of DBU without any metals, resulting in high efficiency and regioselectivity. Notably, all synthesized products were evaluated against five different cancer cell lines and compound 3l selectively inhibited the proliferation of HCT116 cells with an IC50 value of 10.65 µM.


Subject(s)
Metals , Pyrroles , Cycloaddition Reaction , Pyrroles/pharmacology , Catalysis
5.
Molecules ; 28(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38005375

ABSTRACT

A facile and efficient visible-light-mediated method for directly converting 1,4-naphthoquinones into dihydrocyclo-buta[b]naphthalene-3,8-diones (DHCBNDOs) under mild and clean conditions without using any photocatalysts is reported. This approach exhibited favorable compatibility with functional groups and afforded a series of DHCBNDOs with excellent regioselectivity and high yields. Moreover, detailed mechanism studies were carried out both experimentally and theoretically. The readily accessible, low-cost and ecofriendly nature of the developed strategy will endow it with attractive applications in organic and medicinal chemistry.

6.
Cell Metab ; 35(10): 1782-1798.e8, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37586363

ABSTRACT

Glucose metabolism is known to orchestrate oncogenesis. Whether glucose serves as a signaling molecule directly regulating oncoprotein activity for tumorigenesis remains elusive. Here, we report that glucose is a cofactor binding to methyltransferase NSUN2 at amino acid 1-28 to promote NSUN2 oligomerization and activation. NSUN2 activation maintains global m5C RNA methylation, including TREX2, and stabilizes TREX2 to restrict cytosolic dsDNA accumulation and cGAS/STING activation for promoting tumorigenesis and anti-PD-L1 immunotherapy resistance. An NSUN2 mutant defective in glucose binding or disrupting glucose/NSUN2 interaction abolishes NSUN2 activity and TREX2 induction leading to cGAS/STING activation for oncogenic suppression. Strikingly, genetic deletion of the glucose/NSUN2/TREX2 axis suppresses tumorigenesis and overcomes anti-PD-L1 immunotherapy resistance in those cold tumors through cGAS/STING activation to facilitate apoptosis and CD8+ T cell infiltration. Our study identifies NSUN2 as a direct glucose sensor whose activation by glucose drives tumorigenesis and immunotherapy resistance by maintaining TREX2 expression for cGAS/STING inactivation.


Subject(s)
Nucleotidyltransferases , Signal Transduction , Humans , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Signal Transduction/genetics , Carcinogenesis , Immunotherapy , Methyltransferases/metabolism
7.
Molecules ; 28(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37513215

ABSTRACT

α-Ketoamide moieties, as privileged units, may represent a valuable option to develop compounds with favorable biological activities, such as low toxicity, promising PK and drug-like properties. An efficient silver-catalyzed decarboxylative acylation of α-oxocarboxylic acids with isocyanides was developed to derivatize the α-ketoamide functional group via a multicomponent reaction (MCR) cascade sequence in one pot. A series of α-ketoamides was synthesized with three components of isocyanides, aromatic α-oxocarboxylic acid analogues and water in moderate yields. Based on the research, the silver-catalyzed decarboxylative acylation confirmed that an oxygen atom of the amide moiety was derived from the water and air as a sole oxidant for the whole process.

8.
J Org Chem ; 88(13): 7998-8009, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37279456

ABSTRACT

An unexpected Ugi cascade reaction was developed for the facile construction of γ-lactam-fused pyridone derivatives with high tolerance of substrates. A C(sp3)-N bond and a C(sp2)-C(sp2) bond were formed together, accompanied by a chromone ring-opening in Ugi adducts, under the basic conditions without any metal catalyst for the whole process. Screening data of several difficult-to-inhibit cancer cell lines demonstrated that 7l displayed a high cytotoxicity against HCT116 cells (IC50 = 5.59 ± 0.78 µM). Taken together, our findings revealed new insights into the molecular mechanisms underlying compound 7l and provided potential usage of this scaffold for cancer therapeutics.


Subject(s)
Heterocyclic Compounds , Lactams , Lactams/pharmacology , Pyridones/pharmacology , Pyridones/chemistry , Metals
9.
Eur J Med Chem ; 250: 115235, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36863226

ABSTRACT

The efficacy and resistance of cisplatin-based compounds are very intractable problems at present. This study reports a series of platinum(IV) compounds containing multiple-bond ligands, which exhibited better tumor cell inhibitory activity and antiproliferative and anti-metastasis activities than cisplatin. The meta-substituted compounds 2 and 5 were particularly excellent. Further research showed that compounds 2 and 5 possessed appropriate reduction potential and performed significantly better than cisplatin in cellular uptake, reactive oxygen species response, the up-regulation of apoptosis and DNA lesion-related genes, and drug-resistant cell activity. The title compounds exhibited better antitumor potential and fewer side effects than cisplatin in vivo. Multiple-bond ligands were introduced into cisplatin to form the title compounds in this study, which not only enhanced their absorption and overcame drug resistance but also demonstrated the potential to target mitochondria and inhibit the detoxification of tumor cells.


Subject(s)
Antineoplastic Agents , Cisplatin , Cisplatin/pharmacology , Platinum/pharmacology , Platinum/chemistry , Antineoplastic Agents/chemistry , Drug Resistance, Neoplasm , Organoplatinum Compounds/chemistry , Mitochondria , Cell Line, Tumor
10.
11.
ACS Omega ; 8(1): 1577-1587, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643431

ABSTRACT

Described herein is a concise and practical direct amidation at the C-3 position of quinoxalin-2(1H)-ones through an acid-promoted carbamoylation with isocyanide in water. In this conversion, environmentally friendly water and commercial inexpensive isocyanide were used as a solvent and carbamoylation reagent, respectively. This study not only provides a green and efficient strategy for the construction of 3-carbamoylquinoxalin-2(1H)-one derivatives that can be applied to the synthesis of druglike structures but also expands the application of isocyanide in organic chemistry.

12.
RSC Adv ; 12(51): 33175-33179, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36425196

ABSTRACT

We report a "green chemistry"-based Ugi cascade reaction to furnish a series of 2,5-diketopiperazines (through nucleophilic attack of amides upon ketones in Ugi adducts) at moderate-to-good yields. Investigation with the MTT assay revealed compound (±) 5c to exhibit potent anticancer activities against acute myeloid leukaemia (MV411; IC50 = 1.7 µM) and acute T lymphocyte leukaemia (Jurkat; IC50 = 5.7 µM) cell lines.

13.
Chem Asian J ; 17(24): e202200977, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36322683

ABSTRACT

Herein, a small series of 3-pyrrolin-2-ones was efficiently synthesized through a three-step Ugi cascade sequence. This method features readily available substrates, simple aqueous workup procedures and good yields, dramatically improving generality of reaction. Importantly, the newly product N-benzyl-2-(3-(4-chlorophenyl)-4-methyl-2-oxo-2,5-dihydro-1H-pyrrol-1-yl)-2-phen-ylacetamide exhibited potent anti-proliferation in prostate cancer cell line through G1/S cell cycle arrest and targeted in PI3K/AKT/TSC2 signal pathway.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation , Antineoplastic Agents/pharmacology , Prostatic Neoplasms/drug therapy , Cell Line, Tumor , Apoptosis
14.
J Org Chem ; 87(17): 11888-11898, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35976796

ABSTRACT

An efficient one-pot reaction of propargylamides, isocyanides, and water catalyzed by zinc was developed for the rapid construction of 2-oxazolines with a wide functional group tolerance. The methylene-3-oxazoline was proven to play a vitally important role to start the tandem cascade transformation through unfunctionalized alkynes with sequential nucleophilic addition approaches of isocyanide and water. Notably, with a slight alteration of the reaction temperature and the addition of one molecule of water, various ß-amino amide derivatives were synthesized in good to excellent yields.


Subject(s)
Amides , Cyanides , Molecular Structure , Water , Zinc
15.
Eur J Med Chem ; 240: 114565, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35797901

ABSTRACT

Triple-negative breast cancer (TNBC) with the absence of estrogen receptor (ER), progesterone receptor (PR) and HER2 ptotein, is the highly aggressive subtype of breast cancer that exhibits poor prognosis and high tumor recurrence. It is vital to develop effective agents regulating the core molecular pathway of TNBC. Through a medium throughput screening and iterative medicinal chemistry optimization, we identified compound 7h as an autophagic flux inhibitor, which showed potent activities against human TNBC (MDA-MB-231 and MDA-MB-468) cell lines with IC50 values of 8.3 µM, and 6.0 µM, respectively, which are comparable to the potency of 5-FU and Cisplatin, the first line therapies for TNBC. Extensive investigation of mechanisms of action indicated that 7h inhibits autophagic flux and sequential accumulation of p62, leading to DNA damage and disrepair in TNBC cells. Importantly, nuclear p62 accumulation induced by compound 7h results in the inhibition of RNF168-mediated chromatin ubiquitination and the degradation of HR-related proteins in regulating the DNA damage response (DDR) process. In in vivo studies, compound 7h completely suppressed tumor growth in the MDA-MB-231 xenograft model at a dose of 15 mg/kg/q.d. Our findings indicate that compound 7h is an autophagic flux inhibitor and induced the degradation of HR-related proteins. Compound 7h could be potentially developed as an anti-cancer therapeutics for TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Autophagy , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Cell Line, Tumor , Cell Proliferation , Humans , Imidazoles/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Ubiquitin-Protein Ligases
16.
STAR Protoc ; 3(2): 101385, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35600928

ABSTRACT

Metabolites are not only substrates in metabolic reactions, but they also serve as signaling molecules to regulate diverse biological functions. Identification of the binding proteins for the metabolites helps in the understanding of their functions beyond the classic metabolic pathways in which they are involved. We provide the protocol for synthesizing the biotin-labeled myo-inositol, which is used to identify its binding proteins by using biotin pull-down assay, given there is no available tool for the rapid screening of inositol-binding proteins in cells and in vitro systems. Biotin-labeled inositol probe therefore provides a tool to identify inositol's sensors. For complete details on the use and execution of this protocol, please refer to Hsu et al. (2021).


Subject(s)
Biotin , Carrier Proteins , Cell Line , Cells, Cultured , Inositol
17.
J Org Chem ; 87(1): 823-834, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34918940

ABSTRACT

Structurally unique 2,2-disubstituted indolin-3-ones with a quaternary carbon center have been constructed through a novel C-C bond formation at the C3 position of Ugi N-acylamino amide adducts employing an organic base-mediated Dieckmann condensation. This facile, flexible protocol can be fine-tuned to construct drug-like pyrazino[1,2-a]indole fragments with the same quaternary carbon center only through the variation of the acid part in Ugi input. This novel and expeditious methodology has a broad scope and can rapidly generate the drug-like indolin-3-one core.


Subject(s)
Amides , Indoles , Carbon , Molecular Structure
18.
Nanomaterials (Basel) ; 11(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34835640

ABSTRACT

Mitochondria, as the powerhouse of most cells, are not only responsible for the generation of adenosine triphosphate (ATP) but also play a decisive role in the regulation of apoptotic cell death, especially of cancer cells. Safe potential delivery systems which can achieve organelle-targeted therapy are urgently required. In this study, for effective pancreatic cancer therapy, a novel mitochondria-targeted and ROS-triggered drug delivery nanoplatform was developed from the TPP-TK-CPI-613 (TTCI) prodrug, in which the ROS-cleave thioketal functions as a linker connecting mitochondrial targeting ligand TPP and anti-mitochondrial metabolism agent CPI-613. DSPE-PEG2000 was added as an assistant component to increase accumulation in the tumor via the EPR effect. This new nanoplatform showed effective mitochondrial targeting, ROS-cleaving capability, and robust therapeutic performances. With active mitochondrial targeting, the formulated nanoparticles (TTCI NPs) demonstrate much higher accumulation in mitochondria, facilitating the targeted delivery of CPI-613 to its acting site. The results of in vitro antitumor activity and cell apoptosis revealed that the IC50 values of TTCI NPs in three types of pancreatic cancer cells were around 20~30 µM, which was far lower than those of CPI-613 (200 µM); 50 µM TTCI NPs showed an increase in apoptosis of up to 97.3% in BxPC3 cells. Therefore, this mitochondria-targeted prodrug nanoparticle platform provides a potential strategy for developing safe, targeting and efficient drug delivery systems for pancreatic cancer therapy.

19.
Biol Res ; 54(1): 27, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34488902

ABSTRACT

BACKGROUND: Demethylzeylasteral (T-96) is a pharmacologically active triterpenoid monomer extracted from Tripterygium wilfordii Hook F (TWHF) that has been reported to exhibit anti-neoplastic effects against several types of cancer cells. However, the potential anti-tumour effects of T-96 against human Prostate cancer (CaP) cells and the possible underlying mechanisms have not been well studied. RESULTS: In the current study, T-96 exerted significant cytotoxicity to CaP cells in vitro and induced cell cycle arrest at S-phase in a dose-dependent manner. Mechanistically, T-96 promoted the initiation of autophagy but inhibited autophagic flux by inducing ROS-mediated endoplasmic reticulum (ER) stress which subsequently activated the extrinsic apoptosis pathway in CaP cells. These findings implied that T-96-induced ER stress activated the caspase-dependent apoptosis pathway to inhibit proliferation of CaP cells. Moreover, we observed that T-96 enhances the sensitivity of CaP cells to the chemotherapeutic drug, cisplatin. CONCLUSIONS: Taken together, our data demonstrated that T-96 is a novel modulator of ER stress and autophagy, and has potential therapeutic applications against CaP in the clinic.


Subject(s)
Autophagy , Prostatic Neoplasms , Apoptosis , Cell Line, Tumor , Humans , Male , Prostatic Neoplasms/drug therapy , Reactive Oxygen Species , Triterpenes
20.
Mol Cell ; 81(18): 3803-3819.e7, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34547240

ABSTRACT

Mitochondrial dynamics regulated by mitochondrial fusion and fission maintain mitochondrial functions, whose alterations underline various human diseases. Here, we show that inositol is a critical metabolite directly restricting AMPK-dependent mitochondrial fission independently of its classical mode as a precursor for phosphoinositide generation. Inositol decline by IMPA1/2 deficiency elicits AMPK activation and mitochondrial fission without affecting ATP level, whereas inositol accumulation prevents AMPK-dependent mitochondrial fission. Metabolic stress or mitochondrial damage causes inositol decline in cells and mice to elicit AMPK-dependent mitochondrial fission. Inositol directly binds to AMPKγ and competes with AMP for AMPKγ binding, leading to restriction of AMPK activation and mitochondrial fission. Our study suggests that the AMP/inositol ratio is a critical determinant for AMPK activation and establishes a model in which AMPK activation requires inositol decline to release AMPKγ for AMP binding. Hence, AMPK is an inositol sensor, whose inactivation by inositol serves as a mechanism to restrict mitochondrial fission.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Inositol/metabolism , Mitochondrial Dynamics/physiology , AMP-Activated Protein Kinases/physiology , Animals , Cell Line , Humans , Inositol/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , PC-3 Cells , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Stress, Physiological/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...