Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
1.
J Nanobiotechnology ; 22(1): 488, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143492

ABSTRACT

Accurate fluorescence imaging of nanocarriers in vivo remains a challenge owing to interference derived mainly from biological tissues and free probes. To address both issues, the current study explored fluorophores in the near-infrared (NIR)-II window with aggregation-caused quenching (ACQ) properties to improve imaging accuracy. Candidate fluorophores with NIR-II emission, ACQ984 (λem = 984 nm) and IR-1060 (λem = 1060 nm), from the aza-BODIPY and cyanine families, respectively, were compared with the commercial fluorophore ICG with NIR-II tail emission and the NIR-I fluorophore P2 from the aza-BODIPY family. ACQ984 demonstrates high water sensitivity with complete fluorescence quenching at a water fraction greater than 50%. Physically embedding the fluorophores illuminates various nanocarriers, while free fluorophores cause negligible interference owing to the ACQ effect. Imaging based on ACQ984 revealed fine structures in the vascular system at high resolution. Moreover, good in vivo and ex vivo correlations in the monitoring of blood nanocarriers can be established, enabling real-time noninvasive in situ investigation of blood pharmacokinetics and dynamic distribution in various tissues. IR-1060 also has a good ACQ effect, but the lack of sufficient photostability and steady post-labeling fluorescence undermines its potential for nanocarrier bioimaging. P2 has an excellent ACQ effect, but its NIR-I emission only provides nondiscriminative ambiguous images. The failure of the non-ACQ probe ICG to display the biodistribution details serves as counterevidence for the improved imaging accuracy by NIR-II ACQ probes. Taken together, it is concluded that fluorescence imaging of nanocarriers based on NIR-II ACQ probes enables accurate in vivo bioimaging and real-time in situ pharmacokinetic analysis.


Subject(s)
Fluorescent Dyes , Nanoparticles , Optical Imaging , Animals , Fluorescent Dyes/chemistry , Optical Imaging/methods , Mice , Nanoparticles/chemistry , Drug Carriers/chemistry , Tissue Distribution , Mice, Inbred BALB C , Boron Compounds/chemistry , Boron Compounds/pharmacokinetics , Indocyanine Green/chemistry
2.
Acta Pharm Sin B ; 14(7): 3155-3168, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027233

ABSTRACT

The aggregation-caused quenching (ACQ) rationale has been employed to improve the fluorescence imaging accuracy of nanocarriers by precluding free probe-derived interferences. However, its usefulness is undermined by limited penetration and low spatiotemporal resolution of NIR-I (700-900 nm) bioimaging owing to absorption and diffraction by biological tissues and tissue-derived autofluorescence. This study aimed to develop ACQ-based NIR-II (1000-1700 nm) probes to further improve the imaging resolution and accuracy. The strategy employed is to install highly planar and electron-rich julolidine into the 3,5-position of aza-BODIPY based on the larger substituent effects. The newly developed probes displayed remarkable photophysical properties, with intense absorption centered at approximately 850 nm and bright emission in the 950-1300 nm region. Compared with the NIR-I counterpart P2, the NIR-II probes demonstrated superior water sensitivity and quenching stability. ACQ1 and ACQ6 exhibited more promising ACQ effects with absolute fluorescence quenching at water fractions above 40% and higher quenching stability with less than 2.0% fluorescence reillumination in plasma after 24 h of incubation. Theoretical calculations verified that molecular planarity is more important than hydrophobicity for ACQ properties. Additionally, in vivo and ex vivo reillumination studies revealed less than 2.5% signal interference from prequenched ACQ1, in contrast to 15% for P2.

3.
J Pharm Biomed Anal ; 249: 116376, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39053095

ABSTRACT

Lung cancer (LC) continues to be a leading death cause in China, primarily due to late diagnosis. This study aimed to evaluate the effectiveness of using plasma-based near-infrared spectroscopy (NIRS) for LC early diagnosis. A total of 171 plasma samples were collected, including 73 healthy controls (HC), 73 LC, and 25 benign lung tumors (B). NIRS was utilized to measure the spectra of samples. Pre-processing methods, including centering and scaling, standard normal variate, multiplicative scatter correction, Savitzky-Golay smoothing, Savitzky-Golay first derivative, and baseline correction were applied. Subsequently, 4 machine learning (ML) algorithms, including partial least squares (PLS), support vector machines (SVM), gradient boosting machine, and random forest, were utilized to develop diagnostic models using train set data. Then, the predictive performance of each model was evaluated using test set samples. The study was conducted in 5 comparisons as follows: LC and HC, LC and B, B and HC, the diseased group (D) and HC, as well as LC, B and HC. Among the 5 comparisons, SVM consistently generated the best performance with a certain pre-processing method, achieving overall accuracy of 1.0 (kappa: 1.0) in the comparisons of LC and HC, B and HC, as well as D and HC. Pre-processing was identified as a crucial step in developing ML models. Interestingly, PLS demonstrated remarkable stability and relatively high predictive performance across the 5 comparisons, even though it did not achieve the top results like SVM. However, none of these algorithms were able to effectively distinguish B from LC. These findings indicate that the combination of plasma-based NIRS with ML algorithms is a rapid, non-invasive, effective, and economical method for LC early diagnosis.

4.
ACS Omega ; 9(23): 24853-24863, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882096

ABSTRACT

Renal ischemia reperfusion (IR) injury is a prevalent inflammatory nephropathy in surgeries such as renal transplantation or partial nephrectomy, damaging renal function through inducing inflammation and cell death in renal tubules. Mesenchymal stromal/stem cell (MSC)-based therapies, common treatments to attenuate inflammation in IR diseases, fail to exhibit satisfying effects on cell death in renal IR. In this study, we prepared MSC-derived exosome mimetics (EMs) carrying the mammalian target of the rapamycin (mTOR) agonist to protect kidneys in proinflammatory environments under IR conditions. The thioketal-modified EMs carried the mTOR agonist and bioactive molecules in MSCs and responsively released them in kidney IR areas. MSC-derived EMs and mTOR agonists protected kidneys synergistically from IR through alleviating inflammation, apoptosis, and ferroptosis. The current study indicates that MSC-TK-MHY1485 EMs (MTM-EM) are promising therapeutic biomaterials for renal IR injury.

6.
Mol Biotechnol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914920

ABSTRACT

Apoptosis is a natural physiological process of programmed cell death. It is essential for maintaining the homeostasis of the body and the immune system. The dysfunction of apoptosis can lead to the development of autoimmune diseases. In psoriasis, the dysfunction of keratinocyte proliferation manifests as an impairment of apoptosis. Cordycepin is the major active component in cordyceps militaris and has pharmacological effects, including regulation of apoptosis. The pharmacological mechanism of Cordycepin in psoriasis remains unclear. In this study, bioinformatics analysis revealed that the mechanism may be associated with the p53 apoptotic pathway. Further, we confirmed in the experiments that cordycepin inhibited the interleukin (IL)-17A-induced proliferation of HaCaT cells and down-regulated the expression of proliferating cell nuclear antigen (PCNA) and Ki-67. Regulating the expression of apoptotic proteins BAX, Bcl-2, and p53 promote apoptosis. Further investigation of the upstream pathway of apoptosis revealed that cordycepin could normalize the abnormal p53-mouse double minute 2 (MDM2) feedback loop. In vivo results showed that the cordycepin gel could effectively improve imiquimod (IMQ)-induced psoriasis-like skin lesions in mice, and the p53-MDM2 pathway was verified at the protein level. In conclusion, the anti-psoriasis effect of Cordycepin and its potential mechanism have not been discussed in detail. However, our work supports the idea that Cordycepin can be further developed as an Active Pharmaceutical Ingredient (API) for the treatment of psoriasis.

7.
Physiol Plant ; 176(3): e14330, 2024.
Article in English | MEDLINE | ID: mdl-38698648

ABSTRACT

Wall-associated kinases (WAKs) have been determined to recognize pathogenic signals and initiate plant immune responses. However, the roles of the family members in host resistance against Valsa canker, a serious fungal disease of apples and pears, are largely unknown. Here, we identified MbWAK1 in Malus baccata, a resistant germplasm differentially expressed during infection by Valsa mali (Vm). Over-expression of MbWAK1 enhanced the Valsa canker resistance of apple and pear fruits and 'Duli-G03' (Pyrus betulifolia) suspension cells. A large number of phloem, cell wall, and lipid metabolic process-related genes were differentially expressed in overexpressed suspension cell lines in response to Valsa pyri (Vp) signals. Among these, the expression of xyloglucan endotransglucosylase/hydrolase (XTH) gene PbeXTH1 and sieve element occlusion B-like (SEOB) gene PbeSEOB1 were significantly inhibited. Transient expression of PbeXTH1 or PbeSEOB1 compromised the expressional induction of MbWAK1 and the resistance contributed by MbWAK1. In addition, PbeXTH1 and PbeSEOB1 suppressed the immune response induced by MbWAK1. Our results enriched the molecular mechanisms for MbWAK1 against Valsa canker and resistant breeding.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , Malus , Plant Diseases , Plant Proteins , Pyrus , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Pyrus/genetics , Pyrus/microbiology , Malus/genetics , Malus/microbiology , Malus/immunology , Malus/enzymology , Cell Wall/metabolism
8.
PeerJ ; 12: e17272, 2024.
Article in English | MEDLINE | ID: mdl-38699187

ABSTRACT

Background: Esophageal squamous cell carcinoma (ESCC) is highly prevalent and has a high mortality rate. Traditional diagnostic methods, such as imaging examinations and blood tumor marker tests, are not effective in accurately diagnosing ESCC due to their low sensitivity and specificity. Esophageal endoscopic biopsy, which is considered as the gold standard, is not suitable for screening due to its invasiveness and high cost. Therefore, this study aimed to develop a convenient and low-cost diagnostic method for ESCC using plasma-based lipidomics analysis combined with machine learning (ML) algorithms. Methods: Plasma samples from a total of 40 ESCC patients and 31 healthy controls were used for lipidomics study. Untargeted lipidomics analysis was conducted through liquid chromatography-mass spectrometry (LC-MS) analysis. Differentially expressed lipid features were filtered based on multivariate and univariate analysis, and lipid annotation was performed using MS-DIAL software. Results: A total of 99 differential lipids were identified, with 15 up-regulated lipids and 84 down-regulated lipids, suggesting their potential as diagnostic targets for ESCC. In the single-lipid plasma-based diagnostic model, nine specific lipids (FA 15:4, FA 27:1, FA 28:7, FA 28:0, FA 36:0, FA 39:0, FA 42:0, FA 44:0, and DG 37:7) exhibited excellent diagnostic performance, with an area under the curve (AUC) exceeding 0.99. Furthermore, multiple lipid-based ML models also demonstrated comparable diagnostic ability for ESCC. These findings indicate plasma lipids as a promising diagnostic approach for ESCC.


Subject(s)
Biomarkers, Tumor , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Lipidomics , Humans , Esophageal Squamous Cell Carcinoma/blood , Esophageal Squamous Cell Carcinoma/diagnosis , Esophageal Neoplasms/blood , Esophageal Neoplasms/diagnosis , Male , Lipidomics/methods , Female , Biomarkers, Tumor/blood , Retrospective Studies , Middle Aged , Aged , Machine Learning , Lipids/blood , Chromatography, Liquid , Case-Control Studies
9.
Int J Med Sci ; 21(7): 1213-1226, 2024.
Article in English | MEDLINE | ID: mdl-38818465

ABSTRACT

Background: Esophageal squamous cell carcinoma (ESCC), a gastrointestinal cancer, is associated with poor prognosis. Prognostic models predict the likelihood of disease progression and are important for the management of patients with ESCC. The objective of this study was to develop a prognostic model for ESCC using bioinformatics analysis. Methods: Two transcriptome microarray Gene Expression Omnibus ESCC datasets (GSE53624 and GSE53622) were analyzed using bioinformatics methods. Differentially expressed genes (DEGs) were identified using the R package limma, and genes associated with survival outcomes in both datasets were identified by Kaplan-Meier analysis. Genes with diagnostic or prognostic value were selected for further analysis, and hazard ratios and their relationship with pathological TNM (pTNM) staging were investigated using univariate and multivariate Cox analysis. After selecting the independent factors from pTNM staging, Cox analysis and nomogram plotting were performed. The ability of the model to stratify risk and predict survival was evaluated and compared with the pTNM staging system to determine its potential clinical value. Key genes were analyzed by immunohistochemistry and RT-PCR. Results: Four candidate genes (B3GNT3, MACC1, NELL2, and USH1G) with prognostic value were identified from the two transcriptome microarray datasets. Age, pTNM stage, and B3GNT3, MACC1, and NELL2 were identified as independent factors associated with survival in the multivariate Cox analysis and used to establish a prognostic model. The model demonstrated significantly higher accuracy in predicting 3-year survival than the pTNM staging system and was useful for further risk stratification in patients with ESCC. B3GNT3 was significantly downregulated in ESCC tumor tissues and negatively associated with lymph node metastasis. Bioinformatics analysis indicated that B3GNT3 may play a role in immune regulation by regulating M2 macrophages. Conclusion: This study developed a new prognostic model for ESCC and identified B3GNT3 as a potential biomarker negatively associated with lymph node metastasis, which warrants further validation.


Subject(s)
Biomarkers, Tumor , Computational Biology , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/mortality , Prognosis , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/mortality , Male , Female , Middle Aged , Biomarkers, Tumor/genetics , Neoplasm Staging , Transcriptome/genetics , Kaplan-Meier Estimate , Aged , Nomograms
10.
Burns Trauma ; 12: tkae015, 2024.
Article in English | MEDLINE | ID: mdl-38752203

ABSTRACT

Background: Chronic skin wounds are a leading cause of hospital admissions and reduced life expectancy among older people and individuals with diabetes. Delayed wound healing is often attributed to a series of cellular abnormalities. Matrine, a well-studied component found in Sophora flavescens, is recognized for its anti-inflammatory effects. However, its impact on wound healing still remains uncertain. This study aims to explore the potential of matrine in promoting wound healing. Methods: In this study, we utilized gradient extrusion to produce fibroblast-derived exosome-mimetic vesicles as carriers for matrine (MHEM). MHEM were characterized using transmission electron microscopy and dynamic light scattering analysis. The therapeutic effect of MHEM in wound healing was explored in vitro and in vivo. Results: Both matrine and MHEM enhanced the cellular activity as well as the migration of fibroblasts and keratinocytes. The potent anti-inflammatory effect of matrine diluted the inflammatory response in the vicinity of wounds. Furthermore, MHEM worked together to promote angiogenesis and the expression of transforming growth factor ß and collagen I. MHEM contained growth factors of fibroblasts that regulated the functions of fibroblasts, keratinocytes and monocytes, which synergistically promoted wound healing with the anti-inflammatory effect of matrine. Conclusions: MHEM showed enhanced therapeutic efficacy in the inflammatory microenvironment, for new tissue formation and angiogenesis of wound healing.

11.
ACS Appl Bio Mater ; 7(5): 2899-2910, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38607995

ABSTRACT

Acne vulgaris is one of the most prevalent skin disorders; it affects up to 85% of adolescents and often persists into adulthood. Topical 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT) provides an alternative treatment for acne; however, its efficacy is greatly undermined by the limited skin permeability of ALA. Herein, biocompatible ionic liquids (ILs) based on aliphatic acid/choline were employed to enhance the dermal delivery of ALA, thereby improving the efficacy of PDT. In addition to the one-step delivery of ALA by utilizing ILs as carriers, a two-step strategy of pretreating the skin with blank ILs, followed by the administration of free ALA, was employed to test the IL-facilitated dermal delivery of ALA in vitro. The cumulative permeation of ALA through the excised rat skin after IL pretreatment was significantly greater than that in the untreated group, the 20% dimethyl sulfoxide (DMSO) penetration enhancer group, and the one-step group. The penetration efficiency was influenced by formulation and treatment factors, including the type of IL, pretreatment duration, water content in the ILs, and concentration of ALA. In rats, IL pretreatment facilitated faster, greater, and deeper ALA-induced protoporphyrin IX (PpIX) accumulation. Moreover, the IL pretreatment regimen significantly improved the efficacy of ALA-based PDT against acne vulgaris in a rat ear model. The model IL choline citrate ([Ch]3[Cit]1) had a moderate effect on the skin barrier. Trans-epidermal water loss could be recovered 1 h after IL treatment, but no irritation to the rat skin was detected after 7 days of consecutive treatment. It was concluded that biocompatible IL pretreatment enhances the penetration of ALA and thus facilitates the transformation of PpIX and improves the efficacy of PDT against acne vulgaris.


Subject(s)
Acne Vulgaris , Aminolevulinic Acid , Ionic Liquids , Photochemotherapy , Photosensitizing Agents , Skin , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/chemistry , Animals , Ionic Liquids/chemistry , Ionic Liquids/pharmacology , Rats , Acne Vulgaris/drug therapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Skin/metabolism , Skin/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Materials Testing , Particle Size , Rats, Sprague-Dawley , Skin Absorption/drug effects , Male
12.
J Adv Res ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38460775

ABSTRACT

BACKGROUND: The promotion of epidermal barrier dysfunction is attributed to abnormalities in the lipid-microbiome positive feedback loop which significantly influences the imbalance of the epithelial immune microenvironment (EIME) in atopic dermatitis (AD). This imbalance encompasses impaired lamellar membrane integrity, heightened exposure to epidermal pathogens, and the regulation of innate and adaptive immunity. The lipid-microbiome loop is substantially influenced by intense adaptive immunity which is triggered by abnormal loop activity and affects the loop's integrity through the induction of atypical lipid composition and responses to dysregulated epidermal microbes. Immune responses participate in lipid abnormalities within the EIME by downregulating barrier gene expression and are further cascade-amplified by microbial dysregulation which is instigated by barrier impairment. AIM OF REVIEW: This review examines the relationship between abnormal lipid composition, microbiome disturbances, and immune responses in AD while progressively substantiating the crosstalk mechanism among these factors. Based on this analysis, the "lipid-microbiome" positive feedback loop, regulated by immune responses, is proposed. KEY SCIENTIFIC CONCEPTS OF REVIEW: The review delves into the impact of adaptive immune responses that regulate the EIME, driving AD, and investigates potential mechanisms by which lipid supplementation and probiotics may alleviate AD through the up-regulation of the epidermal barrier and modulation of immune signaling. This exploration offers support for targeting the EIME to attenuate AD.

13.
Int J Nanomedicine ; 19: 2057-2070, 2024.
Article in English | MEDLINE | ID: mdl-38482522

ABSTRACT

Purpose: Photodynamic therapy (PDT) has been an attractive strategy for skin tumor treatment. However, the hypoxic microenvironment of solid tumors and further O2 consumption during PDT would diminish its therapeutic effect. Herein, we developed a strategy using the combination of PDT and hypoxia-activated bioreductive drug tirapazamine (TPZ). Methods: TPZ was linked to DSPE-PEG-NHS forming DSPE-PEG-TPZ to solve leakage of water-soluble TPZ and serve as an antitumor agent and monomer molecule further forming the micellar. Chlorin e6 (Ce6) was loaded in DSPE-PEG-TPZ forming DSPE-PEG-TPZ@Ce6 (DPTC). To further improve tumor infiltration and accumulation, hyaluronic acid was adopted to make DPTC-containing microneedles (DPTC-MNs). Results: Both in vitro and in vivo studies consistently demonstrated the synergistic antitumor effect of photodynamic therapy and TPZ achieved by DPTC-MNs. With laser irradiation, overexpressions of PDT tolerance factors NQO1 and HIF-1α were inhibited by this PDT process. Conclusion: The synergistic effect of PDT and TPZ significantly improved the performance of DPTC-MNs in the treatment of melanoma and cutaneous squamous cell carcinoma and has good biocompatibility.


Subject(s)
Carcinoma, Squamous Cell , Nanoparticles , Organometallic Compounds , Phenanthrolines , Photochemotherapy , Skin Neoplasms , Humans , Carcinoma, Squamous Cell/drug therapy , Skin Neoplasms/drug therapy , Tirapazamine/pharmacology , Hypoxia/drug therapy , Cell Line, Tumor , Photosensitizing Agents , Tumor Microenvironment
14.
Biofilm ; 7: 100175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38298832

ABSTRACT

Staphylococcus aureus can readily form biofilm which enhances the drug-resistance, resulting in life-threatening infections involving different organs. Biofilm formation occurs due to a series of developmental events including bacterial adhesion, aggregation, biofilm maturation, and dispersion, which are controlled by multiple regulatory systems. Rapidly increasing research and development outcomes on natural products targeting S. aureus biofilm formation and/or regulation led to an emergent application of active phytochemicals and combinations. This review aimed at providing an in-depth understanding of biofilm formation and regulation mechanisms for S. aureus, outlining the most important antibiofilm strategies and potential targets of natural products, and summarizing the latest progress in combating S. aureus biofilm with plant-derived natural products. These findings provided further evidence for novel antibiofilm drugs research and clinical therapies.

15.
J Control Release ; 368: 372-396, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408567

ABSTRACT

Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , T-Lymphocytes , Neoplasms/pathology , Cell- and Tissue-Based Therapy , Tumor Microenvironment
16.
J Adv Res ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38242529

ABSTRACT

BACKGROUND: The incidence of skin cancer is currently increasing, and conventional treatment options inadequately address the demands of disease management. Fortunately, the recent rapid advancement of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has ushered in a new era for numerous cancer patients. However, the efficacy of immunotherapy remains suboptimal due to the impact of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs), a major component of the TME, play crucial roles in tumor invasion, metastasis, angiogenesis, and immune evasion, significantly impacting tumor development. Consequently, TAMs have gained considerable attention in recent years, and their roles have been extensively studied in various tumors. However, the specific roles of TAMs and their regulatory mechanisms in skin cancer remain unclear. AIM OF REVIEW: This paper aims to elucidate the origin and classification of TAMs, investigate the interactions between TAMs and various immune cells, comprehensively understand the precise mechanisms by which TAMs contribute to the pathogenesis of different types of skin cancer, and finally discuss current strategies for targeting TAMs in the treatment of skin cancer. KEY SCIENTIFIC CONCEPTS OF OVERVIEW: With a specific emphasis on the interrelationship between TAMs and skin cancer, this paper posits that therapeutic modalities centered on TAMs hold promise in augmenting and harmonizing with prevailing clinical interventions for skin cancer, thereby charting a novel trajectory for advancing the landscape of immunotherapeutic approaches for skin cancer.

17.
Biomed Pharmacother ; 171: 116167, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38262152

ABSTRACT

Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease. The Janus kinase (JAK) has been identified as a target in AD, as it regulates specific inflammatory genes and adaptive immune responses. However, the efficacy of topically applied JAK inhibitors in AD is limited due to the unique structure of skin. We synthesized JAK1/JAK2 degraders (JAPT) based on protein degradation targeting chimeras (PROTACs) and prepared them into topical preparations. JAPT exploited the E3 ligase to mediate ubiquitination and degradation of JAK1/JAK2, offering a promising AD therapeutic approach with low frequency and dosage. In vitro investigations demonstrated that JAPT effectively inhibited the release of pro-inflammatory cytokines and reduced inflammation by promoting the degradation of JAK. In vivo studies further confirmed the efficacy of JAPT in degrading JAK1/JAK2, leading to a significant suppression of type I, II, and III adaptive immunity. Additionally, JAPT demonstrated a remarkable reduction in AD severity, as evidenced by improved skin lesion clearance and AD severity scores (SCORAD). Our study revealed the therapeutic potential of JAPT, surpassing conventional JAK inhibitors in the treatment of AD, which suggested that JAPT could be a promising topically applied anti-AD drug targeting the JAK-STAT signaling pathway.


Subject(s)
Dermatitis, Atopic , Janus Kinase Inhibitors , Skin Diseases , Humans , Dermatitis, Atopic/drug therapy , Janus Kinase Inhibitors/therapeutic use , Skin , Inflammation/drug therapy , Janus Kinases/metabolism , Skin Diseases/metabolism , Janus Kinase 1/metabolism , Janus Kinase 2/metabolism
18.
J Control Release ; 365: 818-832, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070601

ABSTRACT

Psoriasis is a chronic inflammatory skin disease characterised by the abnormal proliferation of keratinocytes and dysregulation of immune cells. The upregulation of fibroblast growth factor-inducible molecule 14 (Fn14) in psoriatic lesions has been linked to the development of psoriasis. Transdermal delivery of siRNAs for Fn14 inhibition is challenging. In this study, we developed a composite ionic liquid (CIL) for the transdermal delivery of Fn14 siRNA (siFn14) into keratinocytes, with the aim of modulating the inflammatory response associated with psoriasis. The results showed that CIL-siFn14 effectively suppressed Fn14 expression, resulting in a reduction in both the Psoriasis Area and Severity Index (PASI) score and skin thickness. Furthermore, CIL-siFn14 effectively inhibited the abnormal proliferation of keratinocytes, decreased the production of inflammatory factors associated with psoriasis, prevented the over-activation of CD4+ and CD8+ T cells, and restored the balance of Type 1 T helper (Th1), Th2, Th17 and Treg cells. In conclusion, our findings unveiled the critical role of Fn14 in the pathogenesis of psoriasis and demonstrated the potential of CIL-siFn14 as a novel and effective topical treatment for its management.


Subject(s)
Ionic Liquids , Psoriasis , Skin Diseases , Humans , RNA, Small Interfering/metabolism , CD8-Positive T-Lymphocytes/pathology , Psoriasis/drug therapy , Psoriasis/genetics , Skin Diseases/metabolism , Skin/metabolism , Keratinocytes/metabolism
19.
J Sep Sci ; 47(1): e2300577, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38109069

ABSTRACT

Centrifugal partition chromatography in the pH-zone-refining mode was successfully applied to the separation of alkaloids from the crude extract of Corydalis decumbens. The experiment was performed with a two-phase solvent system composed of petroleum ether-ethyl acetate-ethanol-water (5:5:3:7, v/v/v/v) where triethylamine (10 mM) was added to the stationary phase and hydrochloric acid (10 mM) to the mobile phase. From 1.6 g of the crude extract, 43 mg protopine, 189 mg (+)-egenine, and 158 mg tetrahydropalmatine were obtained with a purity of 98.2%, 94.6%, and 96.7%, respectively. Tetrahydropalmatine showed an interesting anticomplement effect with CH50 0.11 and AP50 0.25 mg/mL, respectively. In a mechanistic study, tetrahydropalmatine interacted with C1, C3, C4, and C5 components in the complement activation cascade.


Subject(s)
Alkaloids , Complement Inactivator Proteins , Corydalis , Corydalis/chemistry , Countercurrent Distribution/methods , Alkaloids/pharmacology , Alkaloids/chemistry , Solvents/chemistry , Hydrogen-Ion Concentration , Complex Mixtures , Chromatography, High Pressure Liquid
20.
Anal Chem ; 96(1): 401-408, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38134291

ABSTRACT

Fluorescent lateral flow immunoassay (LFA) systems are versatile tools for sensitive and quantitative detection of disease markers at the point of care. However, traditional fluorescent nanoparticle-based lateral flow immunoassays are not visible under room light, necessitate an additional fluorescent reader, and lack flexibility for different application scenarios. Herein, we report a dual-readout LFA system for the rapid and sensitive detection of C-reactive protein (CRP) in clinical samples. The system relied on the aggregation-induced emission nanobeads (AIENBs) encapsulated with red AIE luminogen, which possesses both highly fluorescent and colorimetric properties. The AIENB-based LFA in the naked-eye mode was able to qualitatively detect CRP levels as low as 8.0 mg/L, while in the fluorescent mode, it was able to quantitatively measure high-sensitivity CRP (hs-CRP) with a limit of detection of 0.16 mg/L. The AIENB-based LFA system also showed a good correlation with the clinically used immunoturbidimetric method for CRP and hs-CRP detection in human plasma. This dual-modal AIENB-based LFA system offers the convenience of colorimetric testing and highly sensitive and quantitative detection of disease biomarkers and medical diagnostics in various scenarios.


Subject(s)
C-Reactive Protein , Nanoparticles , Humans , Point-of-Care Systems , Immunoassay/methods , Limit of Detection , Coloring Agents
SELECTION OF CITATIONS
SEARCH DETAIL