Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 4339, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38383619

ABSTRACT

DNA double-strand breaks (DSBs) are considered the most relevant lesions to the DNA damage of ionizing radiation (IR), and γ-H2AX foci in peripheral blood lymphocytes are regarded as an adequate marker for DSB quantitative studies. This study aimed to investigate IR-induced DNA damage in mice through γ-H2AX fluorescence analyses by flow cytometry (FCM). The levels of γ-H2AX in CD4/CD8/B220-positive lymphocytes were quantified by FCM through mean fluorescence intensity (MFI) values. Peripheral venous blood samples were collected for evaluation, and all the control groups were restrained from irradiation. For external irradiation experiments, the dose-dependency of MFI values and temporal alternations were assessed both in vitro and in vivo. External radiation exposure damage was positively correlated with the absorbed radiation dose, and the lymphocyte recovered from damage within 3 days. I-131 sodium iodide solution (74 MBq) was injected into the mice intraperitoneally for internal irradiation experiments. Gamma counting and γH2AX foci analyses were performed at 1 h and 24 h by the group. The blood-to-blood S values (Sblood←blood) were applied for the blood-absorbed dose estimation. Internal low-dose-irradiation-induced damage was proved to recover within 24 h. The FCM method was found to be an effective way of quantitatively assessing IR-induced DNA damage.


Subject(s)
Histones , Radiation Exposure , Mice , Animals , Histones/genetics , Iodine Radioisotopes , Dose-Response Relationship, Radiation , Flow Cytometry/methods , Lymphocytes/radiation effects , DNA Damage
2.
Heliyon ; 10(1): e22801, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38226254

ABSTRACT

Purpose: Hemodynamics play a key role in the management of cerebral aneurysm recanalization after coil embolization; however, the most reliable hemodynamic parameter remains unknown. Previous studies have explored the use of both spatiotemporally averaged and maximal definitions for hemodynamic parameters, based on computational fluid dynamics (CFD) analysis, to build predictive models for aneurysmal recanalization. In this study, we aimed to assess the influence of different spatiotemporal characteristics of hemodynamic parameters on predictive performance. Methods: Hemodynamics were simulated using CFD for 66 cerebral aneurysms from 65 patients. We evaluated 14 types of spatiotemporal definitions for two hemodynamic parameters in the pre-coiling model and five in virtual post-coiling model (VM) created by cutting the aneurysm from the pre-coiling model. A total of 91 spatiotemporal hemodynamic features were derived and utilized to develop univariate predictor (UP) and multivariate logistic regression (LR) models. The model's performance was assessed using two metrics: the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). Results: Different spatiotemporal hemodynamic features exhibited a wide range of AUROC values ranging from 0.224 to 0.747, with 22 feature pairs showing a significant difference in AUROC value (P-value <0.05), despite being derived from the same hemodynamic parameter. PDave,q1 was identified as the strongest UP with AUROC/AUPRC values of 0.747/0.385, yielding sensitivity and specificity value of 0.889 and 0.614 at the optimal cut-off value, respectively. The LR model further improved the prediction performance, having AUROC/AUPRC values of 0.890/0.903. At the optimal cut-off value, the LR model achieved a specificity of 0.877, sensitivity of 0.719, outperforming the UP model. Conclusion: Our research indicated that the characteristics of hemodynamic parameters in terms of space and time had a significant impact on the development of predictive model. Our findings suggest that LR model based on spatiotemporal hemodynamic features could be clinically useful in predicting recanalization after coil embolization in patients, without the need for invasive procedures.

3.
Ann Nucl Med ; 36(11): 986-997, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36155888

ABSTRACT

OBJECTIVE: This study aimed to optimize various methods of calculating washout rates (WRs) of 123I-ß-methyl-p-iodophenyl-pentadecanoic (BMIPP), as they are essential to diagnose triglyceride deposit cardiomyovasculopathy (TGCV) which is a rare disease entity identified in Japan and has been encoded in Orphanet (ORPHA code 565612). METHODS: We calculated WRs of 123I-BMIPP from early (20 min) and delayed (200 min) images. We evaluated six methods of calculating WRs to discriminate TGVC patients (age, 56.8 ± 14.6 y; male, n = 13; female, n = 4) and 21 123I-BMIPP studies were involved including 4 follow-up studies. Washout rates were calculated by two planar methods using anterior images with cardiac and background regions of interest (ROIs) and by four SPECT methods using either array and polar plots or summed short-axis images. The final diagnoses of TGCV were confirmed according to the 2020 diagnostic criteria, and the diagnostic accuracy of WRs calculated using the six methods was analyzed using the area under receiver-operating characteristics curves (ROC-AUC). Multiple scatter-plot matrix methods were evaluated with correlations for comparison. RESULTS: All six methods were useful for diagnosis and did not significantly differ. The four SPECT methods showed excellent diagnostic accuracy (AUC 1.0), whereas the planar methods with and without background correction could be acceptable (AUC 0.857 and 0.964, respectively). The WRs were relatively lower for patients with CAD and remarkable metabolic defects than for patients with TGCV but without defects. CONCLUSIONS: For the diagnosis of TGCV, the WR cutoff of 10% of 123I-BMIPP functioned well in planar and SPECT discrimination based on computational methods as a classifier. However, calculation optimization should improve TGCV diagnoses.


Subject(s)
Iodobenzenes , Humans , Male , Female , Adult , Middle Aged , Aged , Triglycerides/metabolism , Iodobenzenes/metabolism , Fatty Acids/metabolism , Tomography, Emission-Computed, Single-Photon/methods , Myocardium/metabolism
4.
Ann Nucl Med ; 36(8): 765-776, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35798937

ABSTRACT

OBJECTIVES: 123I-ioflupane has been clinically applied to dopamine transporter imaging and visual interpretation assisted by region-of-interest (ROI)-based parameters. We aimed to build a multivariable model incorporating machine learning (ML) that could accurately differentiate abnormal profiles on 123I-ioflupane images and diagnose Parkinson syndrome or disease and dementia with Lewy bodies (PS/PD/DLB). METHODS: We assessed 123I-ioflupane images from 239 patients with suspected neurodegenerative diseases or dementia and classified them as having PS/PD/DLB or non-PS/PD/DLB. The image features of high or low uptake (F1), symmetry or asymmetry (F2), and comma- or dot-like patterns of caudate and putamen uptake (F3) were analyzed on 137 images from one hospital for training. Direct judgement of normal or abnormal profiles (F4) was also examined. Machine learning methods included logistic regression (LR), k-nearest neighbors (kNNs), and gradient boosted trees (GBTs) that were assessed using fourfold cross-validation. We generated the following multivariable models for the test database (n = 102 from another hospital): Model 1, ROI-based measurements of specific binding ratios and asymmetry indices; Model 2, ML-based judgement of abnormalities (F4); and Model 3, features F1, F2 and F3, plus patient age. Diagnostic accuracy was compared using areas under receiver-operating characteristics curves (AUC). RESULTS: The AUC was high with all ML methods (0.92-0.96) for high or low uptake. The AUC was the highest for symmetry or asymmetry with the kNN method (AUC 0.75) and the comma-dot feature with the GBT method (AUC 0.94). Based on the test data set, the diagnostic accuracy for a diagnosis of PS/PD/DLB was 0.86 ± 0.04 (SE), 0.87 ± 0.04, and 0.93 ± 0.02 for Models 1, 2 and 3, respectively. The AUC was optimal for Model 3, and significantly differed between Models 3 and 1 (p = 0.027), and 3 and 2 (p = 0.029). CONCLUSIONS: Image features such as high or low uptake, symmetry or asymmetry, and comma- or dot-like profiles can be determined using ML. The diagnostic accuracy of differentiating PS/PD/DLB was the highest for the multivariate model with three features and age compared with the conventional ROI-based method.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Parkinson Disease , Diagnosis, Differential , Humans , Iodine Radioisotopes , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/metabolism , Machine Learning , Nortropanes , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Tomography, Emission-Computed, Single-Photon/methods
5.
Sci Rep ; 12(1): 47, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996922

ABSTRACT

The use of effective shielding materials against radiation is important among medical staff in nuclear medicine. Hence, the current study investigated the shielding effects of a commercially available tungsten apron using gamma ray measuring instruments. Further, the occupational radiation exposure of nurses during 131I-meta-iodo-benzyl-guanidine (131I-MIBG) therapy for children with high-risk neuroblastoma was evaluated. Attachable tungsten shields in commercial tungsten aprons were set on a surface-ray source with 131I, which emit gamma rays. The mean shielding rate value was 0.1 ± 0.006 for 131I. The shielding effects of tungsten and lead aprons were evaluated using a scintillation detector. The shielding effect rates of lead and tungsten aprons against 131I was 6.3% ± 0.3% and 42.1% ± 0.2% at 50 cm; 6.1% ± 0.5% and 43.3% ± 0.3% at 1 m; and 6.4% ± 0.9% and 42.6% ± 0.6% at 2 m, respectively. Next, we assessed the occupational radiation exposure during 131I-MIBG therapy (administration dose: 666 MBq/kg, median age: 4 years). The total occupational radiation exposure dose per patient care per 131I-MIBG therapy session among nurses was 0.12 ± 0.07 mSv. The average daily radiation exposure dose per patient care among nurses was 0.03 ± 0.03 mSv. Tungsten aprons had efficient shielding effects against gamma rays and would be beneficial to reduce radiation exposures per patient care per 131I-MIBG therapy session.


Subject(s)
3-Iodobenzylguanidine/therapeutic use , Neuroblastoma/radiotherapy , Occupational Exposure/prevention & control , Radiation Injuries/nursing , Radiation Injuries/prevention & control , Radiation Protection/methods , Child , Child, Preschool , Female , Gamma Rays , Humans , Infant , Iodine Radioisotopes , Male , Nuclear Medicine/methods , Nurses , Occupational Injuries/nursing , Occupational Injuries/prevention & control , Protective Clothing , Radiation Exposure/prevention & control , Tungsten
6.
Dalton Trans ; 46(47): 16703-16710, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29168856

ABSTRACT

Herein, a templated borate, [Emmim][B5O6(OH)4] (denoted 1, Emmim = 1-ethyl-2,3-dimethylimidazolium), has been synthesized. It is unexpectedly observed that 1 exhibits a series of broadened luminescence curves from -183 to 75 °C, the emission intensities are measured as a decreasing function of temperature, and the line width of the PL emission is strongly enhanced when temperatures decrease below -100 °C. In addition to this, hydrogen bonding (H-B) in 1 with distinctly enlarging trends was observed as the temperature increased. The influence of temperature on H-Bs and physical properties was explored through single crystal X-ray diffraction analysis, theoretical calculations, PL, and dielectric constant test. The results indicate that the temperature can impact weak H-Bs interactions and the PL can be seen as a prober to the varying of structure such as H-Bs in borate crystal.

SELECTION OF CITATIONS
SEARCH DETAIL
...