Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Neuroimage ; 300: 120855, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39299661

ABSTRACT

Few studies have investigated affective flexibility in individuals with high autistic traits. In the present study, we employed affective task-switching paradigm combined with event related potential (ERP) technology to explore affective flexibility in individuals with high autistic traits. Participants were instructed to switch between identifying the gender (gender task) and emotion (emotion task) of presented faces. Two groups of participants were recruited based on the Autism Spectrum Quotient (AQ) scores: a High Autistic Group (HAG) and a Low Autistic Group (LAG). The results confirmed that the HAG exhibited greater behavioral emotion switch costs and increased N2 and decreased P3 components when switching to the emotion task. Additionally, we identified an affective asymmetric switch cost in the HAG, where the switch cost for the emotion task was larger than for the gender task at both behavioral and electrophysiological levels. In contrast, a symmetrical switch cost was observed in the LAG. These findings indicate that the HAG experiences difficulties with affective flexibility, particularly in tasks involving emotional processing. The patterns of affective asymmetric switch costs observed in both groups differed from previous results in autistic children and the general population, suggesting that the relative dominance of gender and emotion tasks may vary between the two groups. We propose that the dominance of emotion tasks declines as autistic traits increase.

2.
BMC Urol ; 24(1): 167, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112963

ABSTRACT

BACKGROUND: At present, the guidelines for urology recommend percutaneous nephrolithotomy (PCNL) as the preferred treatment for staghorn renal calculi (SRC). However, for complete SRC, it has been questioned by clinicians and patients due to high residual stone rate, complications, repeated hospitalizations and high treatment cost. Anatrophic nephrolithotomy (ANL) is a traditional and classic method for the treatment of SRC. Due to its high trauma and high technical requirements, it is difficult to carry out in primary hospitals, and gradually replaced by PCNL. The purpose of this study is to compare the efficacy of PCNL and ANL in the treatment of complete SRC. METHODS: Overall, 238 patients with complete SRC were divided into mini-PCNL in lateral supine position group, (n = 190) and ANL group (n = 94) according to treatment for a retrospective cohort study. The calculi parameters, renal function index, comorbidities of calculi, surgical complications, length and frequency of hospitalization, treatment costs, results of postoperative satisfaction survey were compared between the two groups. RESULTS: The risk of the residual stone rate after mini-PCNL in lateral supine position was 239 times (OR = 238.667, P < 0.0001), the number of residual stone 1.3 times (OR = 1.326, P < 0.0001), the amount of residual stone 2.2 times (OR = 2.224, P < 0.0001) that of ANL. The risk of the cost of initial treatment after mini-PCNL in lateral supine position was 3.3 times (OR = 3.273, P < 0.0001), the total cost of treatment 4 times (OR = 4.051, P < 0.0001), the total length of hospital stays 1.4 times (OR = 1.44, P < 0.0001) that of ANL, the incidence of postoperative renal atrophy was 2.2 times (OR = 2.171, P = 0.008) higher in the ANL than in the mini-PCNL in lateral supine position. Glomerular filtration rate (GFR) reduction after ANL was 1.4 times (OR = 1.381, P = 0.037) greater than that after mini-PCNL in lateral supine position at 24-month follow-up. The risk of the overall satisfaction of ANL was 58 times (OR = 57.857, P < 0.0001) higher than that of mini-PCNL in lateral supine position, the number of branches of staghorn greater than 8 is a high risk factor for the occurrence of residual stone after mini-PCNL in lateral supine position (OR = 353.137, P < 0.0001). CONCLUSION: Although the risk of renal atrophy and decreased GFR after ANL is higher than that of mini-PCNL in lateral supine position, the efficacy of traditional ANL in the treatment of complete SRC was generally superior to that of mini-PCNL in lateral supine position. Moreover, number of branches of staghorn greater than 8 are the preferred ANL for complete SRC. TRIAL REGISTRATION: ChiCTR2100047462. The trial was registered in the Chinese Clinical Trial Registry; registration date: 19/06/2021.


Subject(s)
Nephrolithotomy, Percutaneous , Patient Positioning , Staghorn Calculi , Humans , Male , Female , Nephrolithotomy, Percutaneous/methods , Middle Aged , Staghorn Calculi/surgery , Retrospective Studies , Supine Position , Adult , Patient Positioning/methods , Treatment Outcome , Cohort Studies , Aged
3.
World J Urol ; 42(1): 439, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046536

ABSTRACT

PURPOSE: To confirm if the CYP17A1 gene regulates the ratio of T/E leading to MetS-BPH. METHODS: 824 men, aged 47-88 years, were recruited into this study through consecutive routine physical examination programs and long-term outpatient screening. Several parameters, including SNPs of CYP17A1 gene, total testosterone, estradiol, and the ratio of total testosterone to estradiol (T/E) were obtained for each participant. Based on the diagnosis of BPH, MetS, and MetS-BPH, the participants were divided into BPH and non-BPH groups, MetS and non-MetS groups, and MetS-BPH and non-MetS-BPH groups. Values of the obtained parameters were evaluated using one-way analysis of variance, Student's t-test, Chi-squared test, and logistic regression analysis. RESULTS: SNPs of the CYP17A1 gene, including the rs743572 genotypes (GG, GA, and AA), rs3781287 genotypes (GG, GT, TT), and rs4919686 genotypes (CC, CA, and AA), were present in every group. Only the GG genotype of rs743572 was independently associated with BPH (OR = 5.868, 95% CI: 3.363-7.974, P < 0.001), MetS (OR = 7.228, 95% CI: 3.925-11.331, P < 0.001), and MetS-BPH (OR = 3.417, 95% CI: 1.783-5.266, P < 0.001) after adjusting for age. In the population of genotype GG of rs743572, the decrease in T/E ratio was an independent risk factor for BPH (OR = 839.756, 95% CI: 36.978-1334.263, P = 0.001), MetS (OR = 376.988, 95% CI: 12.980-488.976, P < 0.003), and MetS-BPH (OR = 388.236, 95% CI: 24.869-495.363, P = 0.003). CONCLUSION: The GG genotype of rs743572 in CYP17A1 gene regulating the decrease of T/E ratio can be an independent risk factor for MetS-BPH populations. TRIAL REGISTRATION NUMBER: ChiCTR2200057632 "retrospectively registered". DATE OF REGISTRATION: March 15, 2022 "retrospectively registered".


Subject(s)
Genotype , Prostatic Hyperplasia , Steroid 17-alpha-Hydroxylase , Testosterone , Humans , Steroid 17-alpha-Hydroxylase/genetics , Male , Middle Aged , Aged , Prostatic Hyperplasia/genetics , Retrospective Studies , Aged, 80 and over , Risk Factors , Testosterone/blood , Estradiol/blood , Polymorphism, Single Nucleotide , Cohort Studies
4.
Small ; 20(27): e2307784, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38279620

ABSTRACT

Transition metal nitrides (TMNs) are affirmed to be an appealing candidate for boosting the performance of lithium-sulfur (Li-S) batteries due to their excellent conductivity, strong interaction with sulfur species, and the effective catalytic ability for conversion of polysulfides. However, the traditional bulk TMNs are difficult to achieve large active surface area and fast transport channels for electrons/ions simultaneously. Here, a 2D ultrathin geometry of titanium nitride (TiN) is realized by a facile topochemical conversion strategy, which can not only serve as an interconnected conductive platform but also expose abundant catalytic active sites. The ultrathin TiN nanosheets are coated on a commercial separator, serving as a multifunctional interlayer in Li-S batteries for hindering the polysulfide shuttle effect by strong capture and fast conversion of polysulfides, achieving a high initial capacity of 1357 mAh g-1 at 0.1 C and demonstrating a low capacity decay of only 0.046% per cycle over 1000 cycles at 1 C.

5.
ACS Nano ; 17(23): 24299-24307, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37991834

ABSTRACT

Titanium nitride as a typical transition metal nitride (TMN) has attracted increasing interest for its fascinating characteristics and widespread applications. However, the synthesis of two-dimensional (2D) atomically thin titanium nitride is still challenging which hinders its further research in electronic and optoelectronic fields. Here, 2D titanium nitride with a large area was prepared via in situ topochemical conversion of the titanate monolayer. The titanium nitride reveals a thickness-dependent metallic-to-semiconducting transition, where the atomically thin titanium nitride with a thickness of ∼1 nm exhibits an n-type semiconducting behavior and a highly sensitive photoresponse and displays photoswitchable resistance by repeated light irradiation. First-principles calculations confirm that the chemisorbed oxygen on the surface of the titanium nitride nanosheet depletes its electrons, while the light irradiation induced desorption of oxygen leads to increased electron doping and hence the conductance of titanium nitride. These results may allow the scalable synthesis of ultrathin TMNs and facilitate their fundamental physics research and next-generation optoelectronic applications.

6.
Small ; 19(30): e2302220, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37183308

ABSTRACT

Graphdiyne (GDY) is a fascinating graphene-like 2D carbon allotrope comprising sp and sp2 hybridized carbon atoms. However, GDY materials synthesized by solution-phase methods normally come as thick and porous films or amorphous powders with severely disordered stacking modes that obstruct macroscopic applications. Here, a facile and scalable synthesis of ultrathin holey graphdiyne (HGDY) nanosheets is reported via palladium/copper co-catalyzed homocoupling of 1,3,5-triethynylbenzene. The resulting freestanding 2D HGDY self-assembles into 3D foam-like networks which can in situ anchor clusters of palladium atoms on their surfaces. The Pd/HGDY hybrids exhibit high electrocatalytic activity and stability for the oxygen reduction reaction which outperforms that of Pt/C benchmark. Based on the ultrathin graphene-like sheets and their unique 3D interconnected macrostructures, Pd/HGDY holds great promise for practical electrochemical catalysis and energy-related applications.

7.
Basic Clin Androl ; 32(1): 17, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36192679

ABSTRACT

BACKGROUND: At present, L-carnitine (LC) and coenzyme Q10 (CoQ10), as used clinically to treat male infertility caused by asthenozoospermia (ASZ) is still mainly administered orally, but some patients with ASZ still show no significant improvement in sperm motility and spouse pregnancy rate. Prodom is a device used to assist reproduction, which is temporarily fitted onto the penis to facilitate conception by helping the wife inject a certain drug into the vagina. This study used Prodom-assisted LC/CoQ10 in the treatment of patients with ASZ and evaluated the effect of this method on sperm motility and clinical pregnancy, with the goal of finding a comfortable, low-cost, effective method. RESULTS: During the trial period, 232 cases completed the trial, while 25 cases did not. During in vitro testing, the progressive sperm motility in the LC group, CoQ10 group, LC combined with CoQ10 group, and the semen blank control group was 24.3 ± 4.6% and 38.1 ± 5.1%, 23.0 ± 4.8% and 36.9 ± 4.4%, 28.4 ± 5.0% and 43.8 ± 5.4%, 19.7 ± 4.4% and 26.0 ± 4.9%, respectively. There were statistically significant differences in progressive sperm motility among the groups (all P values < 0.05). The pregnancy rates of the Prodom-assisted LC treatment group, Prodom-assisted CoQ10 treatment group, Prodom-assisted LC combined with CoQ10 treatment group, and oral LC combined with CoQ10 treatment group in the clinical treatment stage were 38.2, 35.4, 57.1, and 30.3%, respectively; the time to conception was 6.1 ± 1.8, 6.2 ± 1.8, 3.4 ± 0.9, and 7.9 ± 2.0, months respectively; and the treatment costs were $2350 ± 457, $2455 ± 434, $1348 ± 411, and $2684 ± 334, respectively. The differences in pregnancy rate, time to conception, and treatment costs among the groups were statistically significant (all P values < 0.05). CONCLUSIONS: The supplementation of in vitro semen with LC/CoQ10 can improve sperm motility. LC/CoQ10 injected into the spouse's vagina with the assistance of a Prodom can increase the pregnancy rate, shorten the time to conception, and reduce the cost of treatment in patients with ASZ. TRIAL REGISTRATION: ChiCTR2000040349 (registry: http://www.chictr.org.cn/ ). Date of registration: November 28, 2020.


RéSUMé: CONTEXTE: À l'heure actuelle, la L-carnitine (LC) et le coenzyme Q10 (CoQ10), tels qu'utilisés en clinique pour traiter l'infertilité masculine due à une asthénozoospermie (AZS), sont encore principalement administrés par voie orale, mais certains patients atteints d'AZS ne montrent pas toujours d'amélioration significative de la motilité des spermatozoïdes, ni de grossesse chez la conjointe. Prodom™ est. un dispositif utilisé pour aider à la reproduction, qui est. temporairement installé sur le pénis pour faciliter la conception en aidant la femme à injecter certains médicaments dans le vagin. Cette étude a utilisé une association CL + CoQ10 assistée par Prodom™ pour traiter des patients atteints d'AZS et a évalué l'effet de cette méthode sur la mobilité des spermatozoïdes et la grossesse clinique, dans le but de trouver une méthode confortable, peu coûteuse et efficace. RéSULTATS: Au cours de cet essai thérapeutique, 232 cas sont allés au bout de l'étude, alors que 25 se sont arrêtés. Au cours des tests in vitro, la mobilité progressive des spermatozoïdes dans le groupe LC, le groupe CoQ10, le groupe CL + CoQ10 et dans le groupe témoin de sperme, était respectivement de 24,3 ± 4,6% et 38,1 ± 5,1%, de 23,0 ± 4,8% et 36,9 ± 4,4%, de 28,4 ± 5,0% et 43,8 ± 5,4%, et de 19,7 ± 4,4% et 26,0 ± 4,9%. La mobilité progressive des spermatozoïdes était significativement différentes entre les groupes (toutes les valeurs de P < 0,05). Les taux de grossesse dans le groupe traité par LC assistée par Prodom™, dans le groupe traité par CoQ10 assisté par Prodom™, dans le groupe traité par une association CL + CoQ10 assistée par Prodom™, et dans le groupe traité cliniquement par CL par voie orale associée au CoQ10, étaient respectivement de 38,2%, 35,4%, 57,1% et 30,3%; le délai de conception était respectivement de 6,1 ± 1,8, 6,2 ± 1,8, 3,4 ± 0,9 et 7,9 ± 2,0, mois; et les coûts de traitement étaient respectivement de 2350 ± 457 $, 2455 ± 434 $, 1348 ± 411 $ et 2684 ± 334 $. Les différences dans le taux de grossesse, le délai de conception et les coûts de traitement entre les groupes étaient statistiquement significatives (toutes les valeurs de P < 0,05). CONCLUSIONS: La supplémentation en LC/CoQ10 du sperme in vitro peut améliorer la mobilité des spermatozoïdes. L'association LC + CoQ10 injectée dans le vagin de la conjointe avec l'aide d'un Prodom™ peut augmenter le taux de grossesse, raccourcir le délai de conception et réduire le coût du traitement chez les patientes atteints d'AZS. Numéro d'enregistrement de l'essai ChiCTR2000040349 (registre: http://www.chictr.org.cn/ ). Date d'enregistrement: 28 novembre 2020.

8.
Sci Rep ; 12(1): 12399, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35859040

ABSTRACT

With the expansion of high-speed railway network in the world, it is inevitable for railways to pass through seasonal frozen regions. Since in a seasonal frozen region the ground can have significantly different mechanical properties between the freezing season and the warm season, train-induced ground vibration is also season-dependent but it has not received enough attention up to now. This paper gives an investigation into the effects of soil and fastener-freezing on ground vibrations induced by high-speed train in frozen regions. Based on the well-established relationships between soil mechanical properties and freezing temperature, a frozen ground is shown to be still represented by a layered ground and therefore, previously developed models for predicting ground vibration generated by a train running along a track resting on a layered ground can be readily applied. The effects of low temperature on the dynamical properties of fasteners are also considered. Results show that, due to the increased Young's modulus at freezing condition, the vibration level of a frozen ground near the track is lower than that of the non-frozen counterpart. However, well away from the track, the vibration level of the frozen ground is much stronger than that of the non-frozen one, mainly due to the much-reduced loss factor of the frozen ground, which results in slower attenuation of vibration with propagating distance. Results also show that, the difference in ground vibration between a frozen ground and its non-frozen counterpart is mainly caused by freezing of the ground. The emphasis of this study lies in making clear the characteristics of train-induced ground vibration in frozen regions and the differences between frozen and non-frozen regions, providing some new fundamental insights about this practical problem, which have significant engineering guidance and application value.

9.
Materials (Basel) ; 15(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35744302

ABSTRACT

In order to study the mechanical properties of polypropylene fiber all-coral seawater concrete in triaxial compression, 36 specimens were developed and constructed for triaxial compression load testing employing confining pressure value (0, 6, 12, 18 MPa) and polypropylene fiber admixture (1 kg·m-3, 2 kg·m-3, 3 kg·m-3) as variation parameters. The test observed the failure mode of the specimen and obtained the stress-strain curve of the whole process of its force damage failure. An in-depth analysis of polypropylene fiber all-coral seawater concrete's peak stress, peak strain, initial elastic modulus, axial deflection, energy dissipation, ductility, and damage evolution process was carried out based on the experimental data. The test findings indicated that the best effect on the deformation properties of polypropylene fiber all-coral seawater concrete is obtained when 3 kg·m-3 of polypropylene fiber is blended. Under triaxial compression, the correct number of polypropylene fibers may significantly enhance the peak stress, peak strain, ductility, and elastic modulus of polypropylene fiber all-coral seawater concrete, therefore enhancing the brittle characteristics of coral concrete. During the triaxial surround pressure test, the confining pressure value and polypropylene fiber coupling effect delayed the appearance of initial damage in polypropylene fiber complete coral seawater concrete specimens, slowed the development of damage, and reduced the degree of damage to the specimens.

10.
Materials (Basel) ; 15(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35057238

ABSTRACT

This paper investigates the compression behavior and failure criteria of lightweight aggregate concrete (LAC) under triaxial loading. A total of 156 specimens were tested for three parameters: concrete strength, lateral confining pressure and aggregate immersion time, and their effects on the failure mode of LAC and the triaxial stress-strain relationship of LAC is studied. The research indicated that, as the lateral constraint of the specimen increases, the failure patterns change from vertical splitting failure to oblique shearing failure and then to indistinct traces of damage. The stress-strain curve of LAC specimens has an obvious stress plateau, and the curve no longer appears downward when the confining pressure exceeds 12 MPa. According to the experimental phenomenon and test data, the failure criterion was examined on the Mohr-Coulomb theory, octahedral shear stress theory and Rendulic plane stress theory, which well reflects the behavior of LAC under triaxial compression. For the convenience of analysis and application, the stress-strain constitutive models of LAC under triaxial compression are recommended, and these models correlate well with the test results.

11.
Basic Clin Androl ; 32(1): 1, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34983365

ABSTRACT

BACKGROUND: The ischiocavernosus muscle (ICM) encompasses a pair of short pinnate muscles attached to the pelvic ring. The ICM begins at the ischial tuberosity and ends at the crus of the penis while covering the surface of the crus. According to the traditional view, the contraction of the ICM plays an auxiliary role in penile erection. However, we have previously shown that the ICM plays an important role in penile erection through an indirect method of diagnosing erectile dysfunction (ED) caused by ICM injury by observing the infertility of paired female rats. Since intracavernosal pressure (ICP) is the current gold standard for diagnosing ED, this study aimed to amputate unilaterally/bilaterally the ICM to establish an ED model by detecting the ICP, recording the infertility of matching female rats, and comparing the two methods. RESULTS: Forty sexually mature adult male rats were selected and randomly divided into the following groups: the control group (n = 10), sham operation group (n = 10), unilateral ischiocavernosus muscle (Uni-ICM) amputation group (n = 10), and bilateral ischiocavernosus muscle (Bi-ICM) amputation group (n = 10). Eighty female reproductive rats were randomly assigned to the above groups at a ratio of 2:1. We evaluated the time to conception for the paired female rats and the effects of unilateral/bilateral severing of the ICM on erectile function. The results showed that the baseline and maximum intracavernosal pressure (ICP) in the control group, sham operation group, Uni-ICM amputation group, and Bi-ICM amputation group were 17.44±2.50 mmHg and 93.51±10.78 mmHg, 17.81±2.81 mmHg and 95.07±10.40 mmHg, 16.73±2.11 mmHg and 83.49±12.38 mmHg, and 14.78±2.78 mmHg and 33.57±6.72 mmHg, respectively, immediately postsurgery. The max ICP in the Bi-ICM amputation group was lower than that in the remaining three groups (all P<0.05). The pregnancy rates were 100, 100, 90, and 0% in the control group, sham operation group, Uni-ICM amputation group, and the Bi-ICM amputation group, respectively. The pregnancy rate in the Bi-ICM amputation group was significantly lower than that in the remaining groups (all P<0.05). The time to conception was approximately 7-10 days later in the Uni-ICM amputation group than in the control and sham groups (all P<0.05). CONCLUSIONS: Male rats undergoing Bi-ICM amputation may develop permanent ED, which affects their fertility. In contrast, rats undergoing Uni-ICM amputation may experience transient ED.


RéSUMé: INTRODUCTION: Le muscle Ischiocavernosus (MIC) est une paire de muscles courts attachés à l'anneau pelvien. Elle commence à la tubérosité ischiale et se termine au crus du pénis tout en couvrant la surface de ce dernier. Selon la vision traditionnelle, la contraction du MIC joue un rôle auxiliaire dans l'érection pénienne. Cependant, nos travaux précédents ont montré qu'il joue un rôle important dans l'érection pénienne par une méthode indirecte de diagnostic de la dysfonction érectile (DE) induite par une blessure du MIC en observant l'infertilité des rats femelles appariés. Comme la pression intracaverneuse (PIC) est actuellement l'étalon de référence pour le diagnostic, cette étude visait à amputer unilatéralement/bilatéralement l'ICM pour établir un modèle de DE par détection de l'ICP, par détection de l'infertilité de rats femelles appariés, et par comparaison des deux méthodes. RéSULTATS: Quarante rats mâles adultes sexuellement matures ont été sélectionnés et répartis aléatoirement dansquatre groupes groupe témoin (n = 10), groupe d'opération simulée (n = 10), groupe d'amputation unilatérale du MIC (Uni-MIC) (n = 10), et groupe d'amputation bilatérale du MIC (Bi-MIC) (n = 10). Quatre-vingts rats femelles en période de reproduction ont été réparties de façon aléatoire dans chacun des groupes mentionnés ci-dessus, selon un rapport de 2:1. Nous avons évalué le temps avant la conception des rats femelles appariés et les effets de l'amputation Uni /Bi-MIC sur la fonction érectile. Les résultats ont montré que la pression de base et la PIC maximale dans le groupe témoin, le groupe d'opération simulée, le groupe Uni-MIC et le groupe Bi-MIC étaient respectivement de 17.44 ± 2.50 mmHg et 93.51 ± 10.78 mmHg, 17.81 ± 2.81 mmHg et 95.07 ± 10.40 mmHg, 16.73 ± 2.11 mmHg et 83.49 ± 12.38 mmHg, et 14.78 ± 2.78 mmHg et 33.57 ± 6.72 mmHg, immédiatement après l'opération. La PIC maximale dans le groupe Bi-MIC était inférieure à celles des trois autres groupes (tous P < 0.05). Les taux de grossesse étaient de 90% dans le groupe Uni-MIC et de 0% dans le groupe Bi-MIC. Le taux de grossesse dans le groupe Bi-MIC était significativement plus faible que dans les autres groupes (tous P < 0.05). Le temps de conception a été d'environ 7 à 10 jours plus tard dans le groupe Uni-MIC que dans le groupe témoin et le groupe d'opération simulée (tous P < 0.05). CONCLUSIONS: Les rats mâles subissant une amputation Bi-MIC peuvent développer une DE permanente qui affecte leur fertilité. En revanche, ceux qui subissent une amputation Uni-MIC peuvent connaître des troubles érectiles transitoires.

12.
Nat Commun ; 13(1): 442, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35064113

ABSTRACT

Manufacturing molecule-based functional elements directly at device interfaces is a frontier in bottom-up materials engineering. A longstanding challenge in the field is the covalent stabilization of pre-assembled molecular architectures to afford nanodevice components. Here, we employ the controlled supramolecular self-assembly of anthracene derivatives on a hexagonal boron nitride sheet, to generate nanographene wires through photo-crosslinking and thermal annealing. Specifically, we demonstrate µm-long nanowires with an average width of 200 nm, electrical conductivities of 106 S m-1 and breakdown current densities of 1011 A m-2. Joint experiments and simulations reveal that hierarchical self-assembly promotes their formation and functional properties. Our approach demonstrates the feasibility of combined bottom-up supramolecular templating and top-down manufacturing protocols for graphene nanomaterials and interconnects, towards integrated carbon nanodevices.

13.
Sci Rep ; 11(1): 14122, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34239023

ABSTRACT

Total testosterone levels decline with age, while prostate volume and the prevalence of benign prostatic hyperplasia increase with age. We sought to investigate the correlation of serum testosterone levels with prostate volume in aging men. We analyzed clinical data obtained from 416 ostensibly healthy men who underwent routine health check-ups and recruited and collected data from these subjects 4 years later. We analyzed the correlation between prostate volume and relevant factors, as well as the correlation between changes in prostate volume and low testosterone over a 4-year period. Men with low testosterone had significantly larger prostate volume than those in the normal testosterone group (26.86 ± 8.75 vs. 24.06 ± 6.77 P = 0.02), and subjects with low testosterone had significantly higher levels of obesity-related factors, including waist circumference, body mass index, and insulin (all P < 0.001). After adjustment for age, testosterone level was negatively correlated with prostate volume (P = 0.004), and prostate volume and 4-year changes in prostate volume were associated with low testosterone. With increased testosterone level, prostate volume showed a significant linear decreasing trend. These findings provide evidence of the relationship between testosterone and prostate volume. Additional large studies are needed to confirm these preliminary results.


Subject(s)
Aging/blood , Prostate/anatomy & histology , Testosterone/blood , Aged , Humans , Male , Middle Aged , Organ Size , Regression Analysis
14.
Adv Mater ; 33(29): e2006836, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34096113

ABSTRACT

Macromolecular films are crucial functional materials widely used in the fields of mechanics, electronics, optoelectronics, and biology, due to their superior properties of chemical stability, small density, high flexibility, and solution-processing ability. Their electronic and mechanical properties, however, are typically much lower than those of crystalline materials, as the macromolecular films have no long-range structural ordering. The state-of-the-art for producing highly ordered macromolecular films is still facing a great challenge due to the complex interactions between adjacent macromolecules. Here, the growth of textured macromolecular films on a designed graphene/high-index copper (Cu) surface is demonstrated. This successful growth is driven by a patterned potential that originates from the different amounts of charge transfer between the graphene and Cu surfaces with, alternately, terraces and step edges. The textured films exhibit a remarkable improvement in remnant ferroelectric polarization and fracture strength. It is also demonstrated that this growth mechanism is universal for different macromolecules. As meter-scale graphene/high-index Cu substrates have recently become available, the results open a new regime for the production and applications of highly ordered macromolecular films with obvious merits of high production and low cost.

15.
Chem Commun (Camb) ; 57(49): 6031-6034, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34032226

ABSTRACT

Graphene nanoribbons (GNRs), quasi-one-dimensional strips of graphene, exhibit a nonzero bandgap due to quantum confinement and edge effects. In the past decade, different types of GNRs with atomically precise structures have been synthesized by a bottom-up approach and have attracted attention as a novel class of semiconducting materials for applications in electronics and optoelectronics. We report the large-scale, inexpensive growth of high-quality oxygen-boron-oxygen-doped chiral GNRs with a defined structure using chemical vapor deposition. For the first time, a regular 2D self-assembly of such GNRs has been demonstrated, which results in a unique orthogonal network of GNRs. Stable and large-area GNR films with an optical bandgap of ∼1.9 eV were successfully transferred onto insulating substrates. This ordered network structure of semiconducting GNRs holds promise for controlled device integration.

16.
Biomed Res Int ; 2021: 8862282, 2021.
Article in English | MEDLINE | ID: mdl-33542928

ABSTRACT

PURPOSE: To evaluate the clinical efficacy of prodom in the administration of urokinase in the vagina in couples with impaired semen liquefaction. MATERIALS AND METHODS: Overall, 261 patients with impaired semen liquefaction were randomly divided into prodom-assisted urokinase treatment (PAUT) group (n = 91), syringe-assisted urokinase treatment (SAUT) group (n = 86), and traditional treatment (TT) group (n = 84) in the first stage. If the first stage of treatment failed, other treatment methods were initiated instead and the patients were grouped according to the newer treatment method in the second stage. The pregnancy rate, time-to-conception, and treatment costs were evaluated in each group. RESULTS: In the first stage, the pregnancy rate in the PAUT, SAUT, and TT groups was 69.23%, 29.07%, and 22.62%, respectively; the time-to-conception was 2.66 ± 1.44, 3.69 ± 2.61, and 3.86 ± 3.00 months, respectively; the treatment costs were 658.18 ± 398.40, 666.67 ± 507.50, and 680.56 ± 480.94 $, respectively. The pregnancy rate and time-to-conception were different in the PAUT group compared with those in SAUT and TT groups (all P < 0.05). However, the difference in treatment costs was not significant (P = 0.717). In the second stage, 154 nonpregnant patients were divided into nine treatment groups, and the effects of changing TT to PAUT on the pregnancy rate, time-to-conception, and treatment costs were observed to be different from those of other treatments (all P < 0.05). CONCLUSION: Prodom-assisted urokinase can effectively treat male infertility secondary to impaired semen liquefaction.


Subject(s)
Infertility, Male/drug therapy , Semen/drug effects , Sperm Motility/physiology , Urokinase-Type Plasminogen Activator/administration & dosage , Adult , Female , Humans , Infertility, Male/metabolism , Infertility, Male/pathology , Male , Middle Aged , Pregnancy , Pregnancy Rate , Semen/chemistry , Semen/physiology , Sperm Count , Vagina/physiology , Young Adult
17.
Sci Adv ; 7(9)2021 Feb.
Article in English | MEDLINE | ID: mdl-33637529

ABSTRACT

Van der Waals heterostructures consisting of graphene and transition metal dichalcogenides have shown great promise for optoelectronic applications. However, an in-depth understanding of the critical processes for device operation, namely, interfacial charge transfer (CT) and recombination, has so far remained elusive. Here, we investigate these processes in graphene-WS2 heterostructures by complementarily probing the ultrafast terahertz photoconductivity in graphene and the transient absorption dynamics in WS2 following photoexcitation. We observe that separated charges in the heterostructure following CT live extremely long: beyond 1 ns, in contrast to ~1 ps charge separation reported in previous studies. This leads to efficient photogating of graphene. Furthermore, for the CT process across graphene-WS2 interfaces, we find that it occurs via photo-thermionic emission for sub-A-exciton excitations and direct hole transfer from WS2 to the valence band of graphene for above-A-exciton excitations. These findings provide insights to further optimize the performance of optoelectronic devices, in particular photodetection.

18.
J Am Chem Soc ; 142(42): 17881-17886, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33021787

ABSTRACT

Bottom-up-synthesized graphene nanoribbons (GNRs) with excellent electronic properties are promising materials for energy storage systems. Herein, we report bottom-up-synthesized GNR films employed as electrode materials for micro-supercapacitors (MSCs). The micro-device delivers an excellent volumetric capacitance and an ultra-high power density. The electrochemical performance of MSCs could be correlated with the charge carrier mobility within the differently employed GNRs, as determined by pump-probe terahertz spectroscopy studies.

19.
Adv Mater ; 32(45): e2001893, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32945038

ABSTRACT

Graphene nanoribbons (GNRs) are quasi-1D graphene strips, which have attracted attention as a novel class of semiconducting materials for various applications in electronics and optoelectronics. GNRs exhibit unique electronic and optical properties, which sensitively depend on their chemical structures, especially the width and edge configuration. Therefore, precision synthesis of GNRs with chemically defined structures is crucial for their fundamental studies as well as device applications. In contrast to top-down methods, bottom-up chemical synthesis using tailor-made molecular precursors can achieve atomically precise GNRs. Here, the synthesis of GNRs on metal surfaces under ultrahigh vacuum (UHV) and chemical vapor deposition (CVD) conditions is the main focus, and the recent progress in the field is summarized. The UHV method leads to successful unambiguous visualization of atomically precise structures of various GNRs with different edge configurations. The CVD protocol, in contrast, achieves simpler and industry-viable fabrication of GNRs, allowing for the scale up and efficient integration of the as-grown GNRs into devices. The recent updates in device studies are also addressed using GNRs synthesized by both the UHV method and CVD, mainly for transistor applications. Furthermore, views on the next steps and challenges in the field of on-surface synthesized GNRs are provided.

20.
Adv Mater ; 32(26): e2001268, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32378243

ABSTRACT

Van der Waals heterostructures (VDWHs), obtained via the controlled assembly of 2D atomically thin crystals, exhibit unique physicochemical properties, rendering them prototypical building blocks to explore new physics and for applications in optoelectronics. As the emerging alternatives to graphene, monolayer transition metal dichalcogenides and bottom-up synthesized graphene nanoribbons (GNRs) are promising candidates for overcoming the shortcomings of graphene, such as the absence of a bandgap in its electronic structure, which is essential in optoelectronics. Herein, VDWHs comprising GNRs onto monolayer MoS2 are fabricated. Field-effect transistors (FETs) based on such VDWHs show an efficient suppression of the persistent photoconductivity typical of MoS2 , resulting from the interfacial charge transfer process. The MoS2 -GNR FETs exhibit drastically reduced hysteresis and more stable behavior in the transfer characteristics, which is a prerequisite for the further photomodulation of charge transport behavior within the MoS2 -GNR VDWHs. The physisorption of photochromic molecules onto the MoS2 -GNR VDWHs enables reversible light-driven control over charge transport. In particular, the drain current of the MoS2 -GNR FET can be photomodulated by 52%, without displaying significant fatigue over at least 10 cycles. Moreover, four distinguishable output current levels can be achieved, demonstrating the great potential of MoS2 -GNR VDWHs for multilevel memory devices.

SELECTION OF CITATIONS
SEARCH DETAIL