Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Mol Biotechnol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664305

ABSTRACT

This study aimed to investigate the mechanisms of LACTB2 in colorectal cancer (CRC). Microarrays and sequencing data of CRC were acquired from UCSC Xena, GTEx, Gene Expression Omnibus, and TCGA. Pooled analysis of the mRNA expression of LACTB2 in CRC was performed using Stata software. The protein expression of LACTB2 in CRC tissues was evaluated by immunohistochemistry. The relationship between immune cell infiltration and LACTB2 expression was investigated using CIBERSORT. The potential signaling pathways and biological mechanisms of LACTB2 were explored using GSEA, KEGG, and GO. Subsequently, further screening of small molecular compounds with potential therapeutic effects on CRC was conducted through the HERB database, followed by molecular docking studies of these compounds with the LACTB2 protein. The integration and analysis of expression data obtained from 2294 CRC samples and 1286 noncancerous colorectal samples showed that LACTB2 was highly expressed in CRC. Immunohistochemistry performed on in-house tissue samples confirmed that LACTB2 protein expression was upregulated in CRC. CIBERSORT revealed lower B cell infiltration levels in the high LACTB2 expression group than in the low expression group. GO, KEGG, and GSEA analyses showed that LACTB2 expression and genes positively correlating with it were mainly related to DNA synthesis and repair, mitochondrial translational elongation and translational termination, phosphorylation, and mTORC1 signaling. Finally, molecular docking simulations confirmed the ability of quercitin to target and bind to LACTB2. This is the first study to demonstrate that LACTB2 is upregulated in CRC. LACTB2 promotes colorectal tumorigenesis and tumor progression.

2.
Cancer Med ; 12(12): 13438-13454, 2023 06.
Article in English | MEDLINE | ID: mdl-37184260

ABSTRACT

BACKGROUND AND AIM: The biological functions and clinical implications of lysophosphatidylcholine acyltransferase 1 (LPCAT1) remain unclarified in gastric cancer (GC). The aim of the current study was to explore the possible clinicopathological significance of LPCAT1 and its perspective mechanism in GC tissues. MATERIALS AND METHODS: The protein expression and mRNA levels of LPCAT1 were detected from in-house immunohistochemistry and public high-throughput RNA arrays and RNA sequencing. To have a comprehensive understanding of the clinical value of LPCAT1 in GC, all enrolled data were integrated to calculate the expression difference and standard mean difference (SMD). The biological mechanism of LPCAT1 in GC was confirmed by computational biology and in vitro experiments. Migration and invasion assays were also conducted to confirm the effect of LPCAT1 in GC. RESULTS: Both protein and mRNA expression levels of LPCAT1 in GC were remarkably higher than those in noncancerous controls. Comprehensively, the SMD of LPCAT1 mRNA was 1.11 (95% CI = 0.86-1.36) in GC, and the summarized AUC was 0.85 based on 15 datasets containing 1727 cases of GC and 940 cases of non-GC controls. Moreover, LPCAT1 could accelerate the invasion and migration of GC by boosting the neutrophil degranulation pathway and disturbing the immune microenvironment. CONCLUSION: An increased level of LPCAT1 may promote the progression of GC.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , Cell Proliferation , Acyltransferases , Computational Biology , RNA, Messenger/genetics , Tumor Microenvironment
3.
PeerJ ; 10: e13708, 2022.
Article in English | MEDLINE | ID: mdl-35846880

ABSTRACT

Background: Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer and lacks effective biomarkers. This study seeks to unravel the expression status and the prospective transcriptional mechanisms of EZH1/EZH2 in TNBC tissue samples. Moreover, another objective of this study is to reveal the prognostic molecular signatures for risk stratification in TNBC patients. Methods: To determine the expression status of EZH1/EZH2 in TNBC tissue samples, microarray analysis and immunohistochemistry were performed on in house breast cancer tissue samples. External mRNA expression matrices were used to verify its expression patterns. Furthermore, the prospective transcriptional mechanisms of EZH1/EZH2 in TNBC were explored by performing differential expression analysis, co-expression analysis, and chromatin immunoprecipitation sequencing analysis. Kaplan-Meier survival analysis and univariate Cox regression analysis were utilized to detect the prognostic molecular signatures in TNBC patients. Nomogram and time-dependent receiver operating characteristic curves were plotted to predict the risk stratification ability of the prognostic-signatures-based Cox model. Results: In-house TMAs (66 TNBC vs. 106 non-TNBC) and external gene microarrays, as well as RNA-seq datasets (1,135 TNBC vs. 6,198 non-TNBC) results, confirmed the downregulation of EZH1 at both the protein and mRNA levels (SMD = -0.59 [-0.80, -0.37]), as is opposite to that of EZH2 (SMD = 0.74 [0.40, 1.08]). The upregulated transcriptional target genes of EZH1 were significantly aggregated in the cell cycle pathway, where CCNA2, CCNB1, MAD2L1, and PKMYT1 were determined as key transcriptional targets. Additionally, the downregulated transcriptional targets of EZH2 were enriched in response to the hormone, where ESR1 was identified as the hub gene. The six-signature-based prognostic model produced an impressive performance in this study, with a training AUC of 0.753, 0.981, and 0.977 at 3-, 5-, and 10-year survival probability, respectively. Conclusion: EZH1 downregulation may be a key modulator in the progression of TNBC through negative transcriptional regulation by targeting CCNA2, CCNB1, MAD2L1, and PKMYT1.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Cell Cycle Proteins/genetics , Down-Regulation/genetics , Membrane Proteins/genetics , Prognosis , Prospective Studies , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , RNA, Messenger , Triple Negative Breast Neoplasms/genetics
4.
Math Biosci Eng ; 18(5): 6941-6960, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34517565

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers in the world, the detection and prognosis of which are still unsatisfactory. Thus, it is essential to explore the factors that may identify ESCC and evaluate the prognosis of ESCC patients. RESULTS: Both protein and mRNA expression levels of BIRC5 are upregulated in ESCC group rather than non-ESCC group (standardized mean difference > 0). BIRC5 mRNA expression is related to the age, tumor location, lymph node stage and clinical stage of ESCC patients (p < 0.05). BIRC5 expression makes it feasible to distinguish ESCC from non-ESCC (area under the curve > 0.9), and its high expression is related to poor prognosis of ESCC patients (restrictive survival time difference = -0.036, p < 0.05). BIRC5 may play an important role in ESCC by influencing the cell cycle pathway, and CDK1, MAD2L and CDC20 may be the hub genes of this pathway. The transcription factors-MAZ and TFPD1 -are likely to regulate the transcription of BIRC5, which may be one of the factors for the high expression of BIRC5 in ESCC. CONCLUSIONS: The current study shows that upregulation of BIRC5 may have essential clinical value in ESCC, and contributes to the understanding of the pathogenesis of ESCC.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Gene Expression Regulation, Neoplastic , Humans , Survivin/genetics , Up-Regulation
5.
Dose Response ; 19(4): 15593258211058981, 2021.
Article in English | MEDLINE | ID: mdl-34987334

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) represents the third most common malignant tumor in the worldwide. Radiotherapy is the common therapeutic treatment for CRC, but radiation resistance is often encountered. ChIP-seq of Histone H3K27 acetylation (H3K27ac) has revealed enhancers that play an important role in CRC. This study examined the relationship between an active CRC enhancer and claudin-1 (CLDN1), and its effect on CRC radiation resistance. METHODS: The target CRC genes of active enhancers were obtained from public H3K27ac ChIP-seq, and the genes highly expressed in radio-resistant CRC were screened and intersected with enhancer-driven genes. The clinical roles of CLDN1 in radiation resistance were examined using the t-test, standard mean deviation (SMD), summary receiver operating characteristic curve and Kaplan-Meier curves. The co-expressed genes of CLDN1 were calculated using Pearson Correlation analysis, and Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes and Gene Set Variation Analysis (GSVA) analyses were used to examine the molecular mechanisms of CLDN1. RESULTS: Total 13 703 CRC genes were regulated by enhancers using 58 H3K27ac ChIP-seq. Claudin-1 (CLDN1) was enhancer-driven and notably up-regulated in CRC tissues compared to non-CRC controls, with a SMD of 3.45 (95 CI % = .56-4.35). CLDN1 expression was increased in radiation-resistant CRC with a SMD of .42 (95% CI = .16-.68) and an area under the curve of .74 (95% CI = .70-.77). The cell cycle and immune macrophage levels were the most significant pathways associated with CLDN1. CONCLUSION: CLDN1 as an enhancer-regulated gene that can boost radiation resistance in patients with CRC.

6.
Oncol Lett ; 19(1): 519-526, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31897166

ABSTRACT

The present study investigated the sensitization of 5-fluorouracil (5-FU)-resistant colon cancer cells in vitro, using oxymatrine, a Chinese herb, and a quinolizidine alkaloid compound extracted from the root of Sophora flavescens. The HCT-8 colon cancer cell line and its 5-FU-resistant subline HCT-8/5-FU were treated with 5-FU and oxymatrine, alone or in combination, at various doses. The cells were subsequently assessed for changes in cell viability, apoptosis and morphology and analyzed by fluorescence microscopy and western blotting. The data demonstrated that HCT-8/5-FU markedly increased the dose of 5-FU required for the suppression of tumor cell viability (78.77±1.90 µg/ml vs. 9.20±0.96 µg/ml in parental HCT-8 cells), whereas HCT-8/5-FU induced the tumor cell epithelial-mesenchymal transition (EMT). By contrast, oxymatrine alone and in combination with 5-FU altered HCT-8/5-FU cell morphology, apoptosis and EMT phenotypes. The combination of oxymatrine and 5-FU reduced the protein expression of snail family transcriptional repressor 2 and vimentin, phosphorylated p65 and induced the expression of E-cadherin, by inhibiting the nuclear factor κB (NF-κB) signaling pathway. In conclusion, the data from the present study demonstrated that EMT was associated with 5-FU chemoresistance in HCT-8/5-FU colon cancer cells, and that oxymatrine treatment was able to reverse such resistance. Oxymatrine may regulate tumor cell EMT and inactivate the NF-κB signaling pathway, and may therefore serve as a potential therapeutic drug to reverse 5-FU resistance in colon cancer cells.

7.
Pathol Res Pract ; 215(2): 278-285, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30497878

ABSTRACT

OBJECTIVES: Hepatobiliary system cancer, which includes hepatocellular carcinoma (HCC), cholangiocarcinoma, and gallbladder carcinoma, has an increase of incidence and mortality due to various risk factors. Epstein-Barr virus (EBV) is associated with various types of lymphomas and carcinomas, which is also acknowledged as the first-discovered human tumor virus. Despite this, there is no systematic analysis about the relationship between the infection of EBV and hepatobiliary system cancer. The aim of this meta-analysis is to explore the significance of EBV infection in the development of hepatobiliary system cancer by evaluating the EBV infection ratio. METHODS: A systematic search of PubMed, Embase, Cochrane Library, as well as China National Knowledge Infrastructure (CNKI), Chongqing VIP, Wan Fang, and China Biology Medicine databases was conducted. The EBV infection ratio and 95% confidence intervals (CIs) in hepatobiliary system cancer was evaluated. The I2 statistic was used to represent heterogeneity. Through meta-regression, stratified analyses were applied to find out heterogeneity's sources. Odds ratios (ORs), 95% CIs of EBV infection in case-control studies were calculated. RESULTS: Altogether, 15 studies were included containing a total of 918 cases and 157 controls. The whole infection ratio of EBV was 23% (95% CI: 13%, 33%, I2 = 95.7%, P < 0.001) among all the patients. Comparable EVB infection ratios were observed in hepatobiliary system cancer as divided into different subtypes. The five case-control studies were epitomized to a pooled OR of 9.35 (95%CI: 2.95, 29.61, I2 = 20.1%, P < 0.286). CONCLUSION: EBV may be a potentially risk factor in the process of hepatobiliary system cancer. The prospective molecular mechanism remains to be explored.


Subject(s)
Bile Duct Neoplasms/virology , Carcinoma, Hepatocellular/virology , Cholangiocarcinoma/virology , Epstein-Barr Virus Infections/epidemiology , Gallbladder Neoplasms/virology , Liver Neoplasms/virology , Humans , Odds Ratio , Prevalence , Risk Factors
8.
Mol Med Rep ; 19(2): 1004-1015, 2019 02.
Article in English | MEDLINE | ID: mdl-30569111

ABSTRACT

Gastric adenocarcinoma (GAC) is a challenging disease with dim prognosis even after surgery; hence, novel treatments for GAC are in urgent need. The aim of the present study was to explore new potential compounds interfering with the key pathways related to GAC progression. The differentially expressed genes (DEGs) between GAC and adjacent tissues were identified from The Cancer Genome Atlas (TCGA) and Genotype­Tissue Expression (GTEx) database. Connectivity Map (CMap) was performed to screen candidate compounds for treating GAC. Subsequently, pathways affected by compounds were overlapped with those enriched by the DEGs to further identify compounds which had anti­GAC potential. A total of 843 DEGs of GAC were identified. Via Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, 13 pathways were significantly enriched. Moreover, 78 compounds with markedly negative correlations with DEGs were revealed in CMap database (P<0.05 and Enrichment <0). Subpathways of cell cycle and p53 signaling pathways, and core genes of these compounds, cyclin B1 (CCNB1) and CDC6, were identified. This study further revealed seven compounds that may be effective against GAC; in particular methylbenzethonium chloride and alexidine have never yet been reported for GAC treatment. In brief, the candidate drugs identified in this study may provide new options to improve the treatment of patients with GAC. However, the biological effects of these drugs need further investigation.


Subject(s)
Adenocarcinoma/genetics , Antineoplastic Agents/therapeutic use , Cell Cycle Proteins/genetics , Cyclin B1/genetics , Gene Expression Regulation, Neoplastic , Nuclear Proteins/genetics , Stomach Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Antineoplastic Agents/classification , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Computational Biology/methods , Cyclin B1/metabolism , Databases, Genetic , Gene Expression Profiling , Gene Ontology , Gene Regulatory Networks , Humans , Molecular Sequence Annotation , Nuclear Proteins/metabolism , Pharmacogenetics/methods , Protein Interaction Mapping , Signal Transduction , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism
9.
Onco Targets Ther ; 9: 5061-71, 2016.
Article in English | MEDLINE | ID: mdl-27574447

ABSTRACT

BACKGROUND: It has been reported that deregulation or dysfunction of microRNAs (miRNAs) plays an essential part in the hepatocarcinogenesis. However, the contribution and mechanism of microRNA-30a-5p (miR-30a-5p) in hepatocellular carcinoma (HCC) remains largely unknown. Therefore, our aim was to investigate the clinicopathological role of miR-30a-5p in HCC tissues and explore its potential pathways in this study. METHODS: The expression of miR-30a-5p was measured in 95 HCC and adjacent noncancer tissues by real-time reverse transcription quantitative polymerase chain reaction. The relationship between miR-30a-5p expression levels and clinicopathological parameters was also analyzed. Furthermore, the potential target genes of miR-30a-5p were collected via online prediction and literature searching. Gene ontology and pathway enrichment analyses were used to identify the possible function of miR-30a-5p in HCC. RESULTS: Compared with adjacent noncancer tissues (2.23±0.77), expression level of miR-30a-5p was significantly lower in HCC tissues (1.26±0.66, P<0.001). MiR-30a-5p expression was evidently correlated with tumor nodes, metastasis, tumor-node-metastasis stage, portal vein tumor embolus, vascular invasion, and status of tumor capsule (all P<0.05). A total of 878 genes were finally used for the biological informatics analyses. These prospective target genes were highly enriched in various key pathways, for instance, Ubiquitin-mediated proteolysis, Axon guidance, Neurotrophin signaling pathway, Amyotrophic lateral sclerosis, and ErbB signaling pathway. CONCLUSION: In conclusion, this study clarifies that the downregulation of miRNA-30a-5p might play a vital part in the incidence and progression of HCC via targeting various prospective genes and pathways. Future validation is required to further explore the prospective molecular mechanism of miR-30a-5p in HCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...