Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 634
Filter
1.
Biotechnol Biofuels Bioprod ; 17(1): 109, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090744

ABSTRACT

BACKGROUND: The 2-phenylethanol (2-PE) tolerance phenotype is crucial to the production of 2-PE, and Pdr1p mutation can significantly increase the tolerance of 2-PE in Saccharomyces cerevisiae. However, its underlying molecular mechanisms are still unclear, hindering the rational design of superior 2-PE tolerance performance. RESULTS: Here, the physiology and biochemistry of the PDR1_862 and 5D strains were analyzed. At 3.5 g/L 2-PE, the ethanol concentration of PDR1_862 decreased by 21%, and the 2-PE production of PDR1_862 increased by 16% than those of 5D strain. Transcriptome analysis showed that at 2-PE stress, Pdr1p mutation increased the expression of genes involved in the Ehrlich pathway. In addition, Pdr1p mutation attenuated sulfur metabolism and enhanced the one-carbon pool by folate to resist 2-PE stress. These metabolic pathways were closely associated with amino acids metabolism. Furthermore, at 3.5 g/L 2-PE, the free amino acids content of PDR1_862 decreased by 31% than that of 5D strain, among the free amino acids, cysteine was key amino acid for the enhancement of 2-PE stress tolerance conferred by Pdr1p mutation. CONCLUSIONS: The above results indicated that Pdr1p mutation enhanced the Ehrlich pathway to improve 2-PE production of S. cerevisiae, and Pdr1p mutation altered the intracellular amino acids contents, in which cysteine might be a biomarker in response to Pdr1p mutation under 2-PE stress. The findings help to elucidate the molecular mechanisms for 2-PE stress tolerance by Pdr1p mutation in S. cerevisiae, identify key metabolic pathway responsible for 2-PE stress tolerance.

2.
Sci Rep ; 14(1): 18362, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112616

ABSTRACT

This work revisits the notion of complex step derivative approximation (CSDA) and presents its use in constitutive model of a class of nonlinear viscoelastic materials. The effectiveness of a CSDA is evaluated by putting it through a series of straightforward examples. After that, the idea of the CSDA is put to use in order to carry out a numerical evaluation of the algorithmic tangent moduli of a viscoelastic constitutive model. The performance of the constitutive models is evaluated through the use of three different numerical tests, and the results are compared to those that were achieved by the application of an analytical method. In comparison to other numerical differentiation techniques, It has been found that the CSDA scheme is the most computationally efficient and robust method of numerical differentiation, regardless of the size of the finite difference interval.

3.
Front Bioeng Biotechnol ; 12: 1428750, 2024.
Article in English | MEDLINE | ID: mdl-39119271

ABSTRACT

Introduction: Cigar wrapper leaves (CWLs) plays a crucial role in reflecting cigar overall quality. Originating from the Qinba region of China, Fangxian Huangjiu (FHJ) is distinctive from other varieties of Huangjiu. Methods: To investigate the effects of FHJ on enhancing the aroma and quality of CWLs, as well as the consequent alterations in microbial communities, Gas Chromatography-Mass Spectrometry (GC-MS) coupled with Odor Active Value (OAV) analysis was utilized to evaluate the volatile aroma components of CWLs. Results and Discussion: The results indicated that the total amount of aroma compounds in CWLs reached 3,086.88 ug/g, increasing of 270.50% and 166.31% compared to the unfermented and naturally fermented groups, respectively. Among them, ß-ionone and 4,7,9-megastigmatrien-3-one from the FHJ fermentation group significantly influenced the sensory characteristics of CWLs. Metagenomic results demonstrated that FHJ fermentation enriched the abundance of both shared and unique microbial species in CWLs, while also increased the diversity of differential microbial species. Addition of FHJ effectively altered the microbial community structure of CWLs from a dominance of Staphylococcus to a prevalence of Staphylococcus, Aspergillus, Pseudomonas, and Acinetobacter. The interactions among these diverse microorganisms collectively contribute to the enhancement of the intrinsic quality of CWLs. This paper provides a theoretical basis for improving the quality of CWLs by FHJ and exploring the changes of microbial community structure and interaction between CWLs and FHJ.

4.
J Autoimmun ; 148: 103295, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39141984

ABSTRACT

OBJECTIVE: This study will explore the function of WTAP, the critical segment of m6A methyltransferase complex, in UC and its regulation on immune response. METHODS: The expression levels of key proteins were detected in colon tissues which were derived from UC patients and mice. Macrophage polarization and CD4+ T cell infiltration were detected by flow cytometry and IF staining. ELISA assay was utilized to analyze the level of the inflammatory cytokines. m6A-RIP-PCR, actinomycin D test, and RIP assays were utilized to detect the m6A level, stability, and bound proteins of CES2 mRNA. A dual luciferase reporter assay was conducted to confirm the transcriptional interactions between genes. A co-culture system of intestinal epithelium-like organs was constructed to detect the primary mouse intestinal epithelial cells (PMIEC) differentiation. The interaction between proteins was detected via Co-IP assay. RESULTS: The expression of WTAP and CES2 in UC tissues was increased and decreased, respectively. Knockdown of WTAP inhibited the progression of UC in mice by inhibiting M1 macrophage polarization and CD4+ T cell infiltration. WTAP combined YTHDF2 to promote the m6A modification of CES2 mRNA and inhibited its expression. CES2 co-expressed with EPHX2 and overexpression of CES2 promoted the differentiation of PMIEC. The inhibitory effect of WTAP knockdown on the progress of UC was partially abrogated by CES2 knockdown. CONCLUSION: WTAP/YTHDF2 silences CES2 by promoting its m6A modification and then promotes the progression of UC. WTAP could be a promoting therapy target of UC.

5.
Sci Rep ; 14(1): 19462, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174641

ABSTRACT

Aluminum (Al) is usually added to solid propellants to improve the combustion performance, however the condensed combustion products (CCPs) especially the large agglomerates generated from aluminum combustion can reduce the specific impulse of the engine, and result in two-phase loss, residue accumulation and throat liner ablation. Al and ammonium perchlorate (AP), as important components of NEPE propellants, can affect the formation process of the CCPs of aluminized NEPE propellants. To clarify the effect of Al and AP particle sizes on the properties of the CCPs of aluminized NEPE propellants, a constant-pressure quench vessel was adopted to collect the combustion products of four different formulations of NEPE propellants. It was found that the condensed combustion products are mainly divided into aluminum agglomerates and oxide particles, the diameter of the aluminum agglomerates of these four different formulations of NEPE propellants at 7 MPa was smaller than that in 3 MPa, and the shells of the aluminum agglomerates were smoother and the spherical shape was more perfect. X-ray diffraction analysis of the CCPs of the four NEPE propellants under 3 MPa revealed the presence of both Al and Al2O3. With the increase of the particle size of Al and AP, the oxidation degree of aluminum particles decreases. The particle size of the CCPs of the four different formulations of NEPE propellants under 1 and 3 MPa was analyzed by using a laser particle size analyzer, it is found that the increase of AP particle size is helpful to reduce the size of condensate combustion products. Based on the classical pocket theory, establishing a new agglomeration size prediction model, which can be used to predict the agglomeration size on the burning surface. Compared with the empirical model, the new agglomeration size prediction model is in good agreement with the experimental results.

6.
Metabolism ; 160: 155994, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117060

ABSTRACT

BACKGROUND: Sarcopenia, characterized by progressive muscle mass and function loss, particularly affects the elderly, and leads to severe consequences such as falls and mortality. Despite its prevalence, targeted pharmacotherapies for sarcopenia are lacking. Utilizing large-sample genome-wide association studies (GWAS) data is crucial for cost-effective drug discovery. METHODS: Herein, we conducted four studies to understand the putative causal effects of genetic components on muscle mass and function. Study 1 employed a two-sample Mendelian randomization (MR) on 15,944 potential druggable genes, investigating their potential causality with muscle quantity and quality in a European population (N up to 461,089). Study 2 validated MR results through sensitivity analyses and colocalization analyses. Study 3 extended validation across other European cohorts, and study 4 conducted quantitative in vivo verification. RESULTS: MR analysis revealed significant causality between four genes (BLOC-1 related complex subunit 7, BORCS7; peptidase m20 domain containing 1, PM20D1; nuclear casein kinase and cyclin dependent kinase substrate 1, NUCKS1 and ubiquinol-cytochrome c reductase complex assembly factor 1, UQCC1) and muscle mass and function (p-values range 5.98 × 10-6 to 9.26 × 10-55). To be specific, BORCS7 and UQCC1 negatively regulated muscle quantity and quality, whereas enhancing PM20D1 and NUCKS1 expression showed promise in promoting muscle mass and function. Causal relationships remained robust across sensitivity analyses, with UQCC1 exhibiting notable colocalization effects (PP·H4 93.4 % to 95.8 %). Further validation and in vivo replication verified the potential causality between these genes and muscle mass as well as function. CONCLUSIONS: Our druggable genome-wide MR analysis identifies BORCS7, PM20D1, NUCKS1, and UQCC1 as causally associated with muscle mass and function. These findings offer insights into the genetic basis of sarcopenia, paving the way for these genes to become promising drug targets in mitigating this debilitating condition.

7.
Cell Rep ; 43(8): 114604, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39146185

ABSTRACT

Exo70, a key exocyst complex component, is crucial for cell motility and extracellular matrix (ECM) remodeling in cancer metastasis. Despite its potential as a drug target, Exo70's post-translational modifications (PTMs) are poorly characterized. Here, we report that Exo70 is transamidated on Gln5 with Lys56 of cystatin A by transglutaminases TGM1 and TGM3, promoting tumor metastasis. This modification enhances Exo70's association with other exocyst subunits, essential for secreting matrix metalloproteinases, forming invadopodia, and delivering integrins to the leading edge. Tumor suppressor liver kinase B1 (LKB1), whose inactivation accelerates metastasis, phosphorylates TGM1 and TGM3 at Thr386 and Thr282, respectively, to inhibit their interaction with Exo70 and the following transamidation. Cantharidin, a US Food and Drug Administration (FDA)-approved drug, inhibits Exo70 transamidation to restrain tumor cell migration and invasion. Together, our findings highlight Exo70 transamidation as a key molecular mechanism and target and propose cantharidin as a therapeutic strategy with direct clinical translational value for metastatic cancers, especially those with LKB1 loss.

8.
Chem Sci ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39184293

ABSTRACT

Activated receptor tyrosine kinases (RTKs) rely on the assembly of signaling proteins into high-dimensional protein complexes for signal transduction. Shc1, a prototypical scaffold protein, plays a pivotal role in directing phosphotyrosine (pY)-dependent protein complex formation for numerous RTKs typically through its two pY-binding domains. The three conserved pY sites within its CH1 region (Shc1CH1) hold particular significance due to their substantial contribution to its functions. However, how Shc1 differentially utilizes these sites to precisely coordinate protein complex assembly remains unclear. Here, we employed multiple peptide ligation techniques to synthesize an array of long protein fragments (107 amino acids) covering a significant portion of the Shc1CH1 region with varying phosphorylation states at residues Y239, 240, 313, and S335. By combining these phospho-Shc1CH1 fragments with integrated proteomics sample preparation and quantitative proteomic analysis, we were able to comprehensively resolve the site-specific interactomes of Shc1 with single amino acid resolution. By applying this approach to different cancer cell lines, we demonstrated that these phospho-Shc1CH1 fragments can be effectively used as a diagnostic tool to assess cell type-specific RTK signaling networks. Collectively, these biochemical conclusions help to better understand the sophisticated organization of pY-dependent Shc1 adaptor protein complexes and their functional roles in cancer.

9.
Cancer Innov ; 3(5): e135, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38948899

ABSTRACT

Background: Bone marrow is the leading site for metastasis from neuroblastoma and affects the prognosis of patients with neuroblastoma. However, the accurate diagnosis of bone marrow metastasis is limited by the high spatial and temporal heterogeneity of neuroblastoma. Radiomics analysis has been applied in various cancers to build accurate diagnostic models but has not yet been applied to bone marrow metastasis of neuroblastoma. Methods: We retrospectively collected information from 187 patients pathologically diagnosed with neuroblastoma and divided them into training and validation sets in a ratio of 7:3. A total of 2632 radiomics features were retrieved from venous and arterial phases of contrast-enhanced computed tomography (CT), and nine machine learning approaches were used to build radiomics models, including multilayer perceptron (MLP), extreme gradient boosting, and random forest. We also constructed radiomics-clinical models that combined radiomics features with clinical predictors such as age, gender, ascites, and lymph gland metastasis. The performance of the models was evaluated with receiver operating characteristics (ROC) curves, calibration curves, and risk decile plots. Results: The MLP radiomics model yielded an area under the ROC curve (AUC) of 0.97 (95% confidence interval [CI]: 0.95-0.99) on the training set and 0.90 (95% CI: 0.82-0.95) on the validation set. The radiomics-clinical model using an MLP yielded an AUC of 0.93 (95% CI: 0.89-0.96) on the training set and 0.91 (95% CI: 0.85-0.97) on the validation set. Conclusions: MLP-based radiomics and radiomics-clinical models can precisely predict bone marrow metastasis in patients with neuroblastoma.

10.
iScience ; 27(6): 109953, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947510

ABSTRACT

The development of targeted drugs for the early prevention and management of chronic kidney disease (CKD) is of great importance. However, the success rates and cost-effectiveness of traditional drug development approaches are extremely low. Utilizing large sample genome-wide association study data for drug repurposing has shown promise in many diseases but has not yet been explored in CKD. Herein, we investigated actionable druggable targets to improve renal function using large-scale Mendelian randomization and colocalization analyses. We combined two population-scale independent genetic datasets and validated findings with cell-type-dependent eQTL data of kidney tubular and glomerular samples. We ultimately prioritized two drug targets, opioid receptor-like 1 and F12, with potential genetic support for restoring renal function and subsequent treatment of CKD. Our findings explore the potential pathological mechanisms of CKD, bridge the gap between the molecular mechanisms of pathogenesis and clinical intervention, and provide new strategies in future clinical trials of CKD.

11.
Int Immunopharmacol ; 140: 112823, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39083929

ABSTRACT

Arsenic, a poisonous metalloid element, is linked to liver diseases, but the exactmechanisms for this process are not yet to be completely elucidated. Toll like receptor 4 (TLR4), acting as a pathogenic pattern recognition receptor, plays a pivotal role in various inflammatory diseases via the myeloid differentiation factor 88 (MyD88) pathway. This study aims to investigate the involvement of the TLR4-MyD88 signaling pathway in liver injury induced by prolonged exposure to sodium arsenite (NaAsO2) in Sprague-Dawley rats. Our research findings demonstratethe activation of TLR4-MyD88 signaling pathway in long-term NaAsO2-exposed rat liver tissues, leading to a significant release of inflammatory factors, which suggests its potential involvement in the pathogenesis of NaAsO2-induced liver injury. We further administered lipopolysaccharide (LPS), a natural ligand of TLR4, and TAK-242, a specific inhibitor of TLR4, to rats in order to validate the specific involvement of the TLR4-MyD88 signaling pathway in NaAsO2-induced liver injury. The results showed that, 1 mg/kg.bw LPS treatment significantly activated TLR4-MyD88 signalling pathway and its mediated pro-inflammatory factors, leading to up-regulation of activation indicators in hepatic stellate cells (HSCs) as well as increased secretion levels of extracellular matrix (ECM) in the liver, and ultimately induced liver fibrosis and dysfunction in rats. Relevantly, subsequent administration of 0.5 mg/kg.bw TAK-242 significantly attenuated the expression levels of TLR4 and its associated proteins, mitigated collagen deposition, and partially improved liver fibrosis and dysfunction caused by NaAsO2 in rats. Our study fully confirms the pivotal role of the TLR4-MyD88 signaling in promoting liver injury induced by NaAsO2, thereby providing a novel molecular target for preventing and treating patients with arsenic poisoning-related liver injury.

12.
Ecotoxicol Environ Saf ; 283: 116791, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068742

ABSTRACT

Environmental heavy metals pollution have seriously threatened the health of human beings. An increasing number of researches have demonstrated that environmental heavy metals can influence the telomere length of Peripheral Blood Mononuclear Cells (PBMCs), which implicate biological aging as well as predicts diseases. Our previous study has shown that methylmercury (MeHg)-induced telomere shortening in rat brain tissue was associated with urinary melatonin metabolite 6-sulfatoxymelatonin (aMT6s) levels. Here, we aimed to further elucidate the impact of 4 typical heavy metals (As, Hg, Cd and Pb) on telomere length of PBMCs and their association with urinary aMT6s in rats. In this study, eighty-eight male Sprague-Dawley rats were randomized grouped into eleven groups. Among them, forty 3-month-old (young) and forty 12-month-old (middle-aged) rats were divided into young or middle-aged control groups as well as typical heavy metals exposed groups, respectively. Eight 24-month-old rats (old) was divided into aging control group. The results showed that MeHg exposure in young rats while sodium arsenite (iAs), MeHg, cadmium chloride (CdCl2), lead acetate (PbAc) exposure in middle-aged rats for 3 months significantly reduced the levels of and urinary aMT6s, as well as telomere length of PBMCs. In addition, they also induced abnormalities in serum oxidative stress (SOD, MDA and GPx) and inflammatory (IL-1ß, IL-6 and TNF-α) indicators. Notably, there was a significant positive correlation between declined level of urinary aMT6s and the shortening of telomere length in PBMCs in rats exposed to 4 typical heavy metals. These results suggested that 4 typical heavy metals exposure could accelerate the reduction of telomere length of PBMCs partially by inducing oxidative stress and inflammatory in rats, while ageing may be an important synergistic factor. Urinary aMT6s detection may be a alternative method to reflect telomere toxic effects induced by heavy metal exposure.

13.
Front Bioeng Biotechnol ; 12: 1417601, 2024.
Article in English | MEDLINE | ID: mdl-39045536

ABSTRACT

Introduction: Microbial succession and metabolic adjustment during cigar tobacco leaf (CTL) fermentation are key factors to improve the quality and flavor of CTLs. However, the interactions in the above processes remain to be further elucidated. Methods: Bacillus altitudinis inoculants were added to the CTLs, and metagenomics and metabolomics were used to analyze the effects of the inoculants on regulating microbial succession, metabolic shift, and aroma production during fermentation. Results and discussion: The addition of the inoculants reinforced the CTL macromolecule transformation and facilitated the aroma production efficiently, and the total aroma production was increased by 43% compared with natural fermentation. The omics analysis showed that Staphylococcus was a main contributor to fatty acid degradation, inositol phosphate metabolism, energy supply (oxidative phosphorylation), nutrient transport (ABC transporter and phosphotransferase system [PTS]), and aroma production (terpenoid backbone biosynthesis, phenylalanine metabolism, and degradation of aromatic compounds). Furthermore, Staphylococcus was positively correlated with TCA cycle intermediates (citric acid, fumaric acid, and aconitic acid), cell wall components, peptidoglycan intermediates (GlcNAc-1-P and UDP-GlcNAc), and phytic acid degradation products (inositol). The characteristics collectively showed Staphylococcus to be the most dominant in the microbial community at the genus level during microflora succession. The addition of the inoculants supplemented the nutritional components of the CTLs, enhanced the metabolic activity and diversity of bacteria such as Corynebacterium, improved their competitive advantages in the microflora succession, and facilitated the richness of microbial communities. Additionally, a metabolic shift in nicotine degradation and NAD + anabolism from Staphylococcus to Corynebacterium in fermentation with inoculants was first observed. Meanwhile, the significantly correlative differential metabolites with Staphylococcus and Corynebacterium were a metabolic complement, thus forming a completely dynamic fermentation ecosystem. The results provided evidence for CTL fermentation optimization.

14.
Inquiry ; 61: 469580241263876, 2024.
Article in English | MEDLINE | ID: mdl-39082075

ABSTRACT

To investigate clinical nurses' perception of adverse event risk and to analyze its influencing factors. A proportional stratified random sampling method was applied to recruit nurses from a hospital in Shiyan City, Hubei Province, China. The Nursing Adverse Event Risk Perception Scale, Organizational Support Questionnaire, Nurse Manager Leadership Behavior Questionnaire, Nursing Safety Behavior Questionnaire, and Burnout scale was used to investigate 1084 nurses. Univariate analysis, Pearson correlation analysis, and multiple linear regression analysis were used to analyze the influencing factors. The scores of the Nurses' Risk Perception of Adverse Nursing Event Scale, Organizational Support Questionnaire, Nurse Manager Leadership Behavior Questionnaire, Nursing Safety Behavior Questionnaire, and Burnout Scale were 14.98 ± 5.39, 52.57 ± 10.00, 88.98 ± 21.08, 56.42 ± 5.03, 30.90 ± 21.49, respectively. According to the correlation analysis, nurses' perception of adverse nursing events was positively correlated with the sense of organizational support (r = .457, P < .01), head nurses' leadership behavior (r = .348, P < .01), and nurse safety behavior (r = .457, P < .01), and negatively correlated with the level of burnout (r = -.384, P < .01). According to the Regression analysis, nurses' departments (ß = .226, P < .001), daily working hours (ß = 1.122, P < .001), adverse events experience (ß = -1.505, P < .001), organizational support (ß = .105, P < .001), head nurses' leadership behavior (ß = .072, P < .001), and burnout (ß = -.052, P < .001) held an influence on nurses' risk perception of adverse nursing event. These factors explained 42.5% of the total variation. Nurses' risk perception of adverse nursing events needs to be improved. Nursing managers need to strengthen organizational support for nurses, change the leadership behavior of nurse managers, reduce nurses' burnout, improve nurses' risk perception of adverse nursing events, prevent adverse events, and ensure patient safety.


Subject(s)
Burnout, Professional , Leadership , Nursing Staff, Hospital , Humans , Cross-Sectional Studies , Female , Adult , China , Nursing Staff, Hospital/psychology , Male , Burnout, Professional/psychology , Surveys and Questionnaires , Attitude of Health Personnel , Perception , Medical Errors/psychology , Patient Safety , Organizational Culture , Middle Aged
15.
Phytomedicine ; 132: 155884, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053245

ABSTRACT

BACKGROUND: QiJu-DiHuang Wan (QJDHW), a frequently employed Chinese herbal formula, is used to treat blurred vision. Even so, it is unclear how it works in treating age-related dry eyes. OBJECTIVE: The aim of this research is to explore the potential mechanisms of QJDHW in treating dry eye using UHPLC-QE-MS, metabolomics, and network pharmacology. METHODS: Six male SD rats were segregated into control and QJDHW groups. Following intervention, The primary active ingredients in QJDHW-containing serum were identified using UHPLC-QE-MS. Metabolomics and network pharmacology were utilized to investigate potential targets and pathways involved following QJDHW use. Primary lacrimal epithelial cells were used for validation. RESULTS: A total of 425 active ingredients of QJDHW were identified, along with 210 active ingredients in QJDHW-containing serum. A comparison of QJDHW-containing serum and control serum samples revealed 40 metabolic differentiators. A total of 24 metabolites were found in QJDHW and QJDHW-containing serum. Network pharmacology identified 3,144 targets for dry eye disease, and 102 metabolite action targets were found for QJDHW-entering components. KEGG Enrichment Analysis revealed significance of HIF-1, apoptosis, cell cycle and PI3K-Akt, among others. HIF-1 and PI3K-Akt were chosen for verification in the oxidative damage model of lacrimal epithelial cells. CONCLUSION: The main active ingredients of QJDHW and its containing serum were elucidated by UHPLC-QE-MS demonstrating that QJDHW treats age-associated dry eye by inhibiting HIF1α/NF-κB through ROS inhibition and PI3K/p-AKT activation.


Subject(s)
Drugs, Chinese Herbal , Dry Eye Syndromes , Metabolomics , Network Pharmacology , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/pharmacology , Male , Dry Eye Syndromes/drug therapy , Rats , Chromatography, High Pressure Liquid , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Lacrimal Apparatus/drug effects , Lacrimal Apparatus/metabolism , Signal Transduction/drug effects
16.
Angew Chem Int Ed Engl ; : e202410179, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953224

ABSTRACT

Photocatalytic synthesis of H2O2 is an advantageous and ecologically sustainable alternative to the conventional anthraquinone process. However, achieving high conversion efficiency without sacrificial agents remains a challenge. In this study, two covalent organic frameworks (COF-O and COF-C) were prepared with identical skeletal structures but with their pore walls anchored to different alkyl chains. They were used to investigate the effect of the chemical microenvironment of pores on photocatalytic H2O2 production. Experimental results reveal a change of hydrophilicity in COF-O, leading to suppressed charge recombination, diminished charge transfer resistance, and accelerated interfacial electron transfer. An apparent quantum yield as high as 10.3 % (λ=420 nm) can be achieved with H2O and O2 through oxygen reduction reaction. This is among the highest ever reported for polymer photocatalysts. This study may provide a novel avenue for optimizing photocatalytic activity and selectivity in H2O2 generation.

17.
BMJ Open ; 14(6): e084703, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950988

ABSTRACT

INTRODUCTION: Orthodontic treatment using face mask protraction combined with an alternate rapid maxillary expansion and constriction/protraction face mask (Alt-RAMEC/PFM) protocol is effective in the early treatment of patients with class III malocclusion, but the stability of treatment outcomes represents a major concern. Previous studies have suggested that tonsillar hypertrophy can be a risk factor for class III malocclusion and tonsillectomy may prompt the normalisation of dentofacial growth. However, these studies had a low-to-moderate level of evidence. This study was designed to identify the impact of tonsillectomy before orthodontic treatment on the efficacy and stability of Alt-RAMEC/PFM protocols and the sleep quality and oral health in children with anterior crossbite and tonsillar hypertrophy. METHODS AND ANALYSIS: This is a two-arm, parallel-group, superiority cluster randomised controlled trial, with four clinics randomly assigned to the surgery-first arm and the orthodontic-first arm in a 1:1 ratio. The Alt-RAMEC protocol involves alternate activation and deactivation of the expander's jet screw over 6 weeks to stimulate maxillary suture distraction. Patients will be instructed to wear the PFM for a minimum of 14 hours per day. The primary outcomes are changes in Wits appraisal and the degree of maxillary advancement from baseline to the end of orthodontic treatment. Lateral cephalometric radiographs, polysomnography, Obstructive Sleep Apnoea-18 questionnaire and Oral Health Impact Profile-14 questionnaire will be traced, collected and measured. We will recruit 96 patients intofor the study. To assess differences, repeated multilevel linear mixed modelling analyses will be used. ETHICS AND DISSEMINATION: This study has been granted ethical approval by the Ethics Committee of the School & Hospital of Stomatology, Wuhan University (approval No. 2023-D10). Written informed consent will be obtained from the participants and their guardians. The results of the trial will be disseminated through academic conferences and journal publications. TRIAL REGISTRATION NUMBER: ChiCTR2300078833.


Subject(s)
Hypertrophy , Malocclusion, Angle Class III , Palatal Expansion Technique , Palatine Tonsil , Tonsillectomy , Humans , Tonsillectomy/methods , Child , Malocclusion, Angle Class III/surgery , Malocclusion, Angle Class III/therapy , Palatine Tonsil/pathology , Palatine Tonsil/surgery , Female , Extraoral Traction Appliances , Randomized Controlled Trials as Topic , Male , Treatment Outcome , Sleep Quality , Adolescent
18.
Biol Trace Elem Res ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831176

ABSTRACT

Arsenic is an environmental pollutant that has garnered considerable attention from the World Health Organization. Liver fibrosis is an advanced pathological stage of liver injury that can be caused by chronic arsenic exposure and has the potential to be reversed to prevent cirrhosis and hepatic malignancies. However, effective treatment options are currently limited. Given the profibrogenic effect of hepatocyte senescence, we established a rat model of sub-chronic sodium arsenite exposure and investigated the ability of resveratrol (RSV), a potential anti-senescence agent, to ameliorate arsenic-induced liver fibrosis and elucidate the underlying mechanism from the perspective of hepatocyte senescence. The results demonstrated that RSV was capable of mitigating fibrosis phenotypes in rat livers, including the activation of hepatic stellate cell (HSC), the generation of extracellular matrix, and the deposition of collagen fibers in the liver vascular zone, which are all induced by arsenic exposure. Furthermore, as an activator of the longevity factor SIRT1, RSV antagonized the arsenic-induced inhibition of SIRT1 expression, thereby restoring the suppression of the senescence protein p16 by SIRT1. This prevented arsenic-induced hepatocyte senescence, manifesting as a decrease in telomere shortening and a reduction in the release of senescence-associated secretory phenotype (SASP)-related proteins. In conclusion, this study demonstrated that RSV counteracts arsenic-induced hepatocyte senescence and the release of SASP-related proteins by restoring the inhibitory effect of SIRT1 on p16, thereby suppressing the activation of fibrotic phenotypes and mitigating liver fibrosis. These findings provide new insights for understanding the mechanism of arsenic-induced liver fibrosis, and more importantly, they reveal novel potential interventional approaches.

19.
Virol J ; 21(1): 123, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822405

ABSTRACT

BACKGROUND: Long coronavirus disease (COVID) after COVID-19 infection is continuously threatening the health of people all over the world. Early prediction of the risk of Long COVID in hospitalized patients will help clinical management of COVID-19, but there is still no reliable and effective prediction model. METHODS: A total of 1905 hospitalized patients with COVID-19 infection were included in this study, and their Long COVID status was followed up 4-8 weeks after discharge. Univariable and multivariable logistic regression analysis were used to determine the risk factors for Long COVID. Patients were randomly divided into a training cohort (70%) and a validation cohort (30%), and factors for constructing the model were screened using Lasso regression in the training cohort. Visualize the Long COVID risk prediction model using nomogram. Evaluate the performance of the model in the training and validation cohort using the area under the curve (AUC), calibration curve, and decision curve analysis (DCA). RESULTS: A total of 657 patients (34.5%) reported that they had symptoms of long COVID. The most common symptoms were fatigue or muscle weakness (16.8%), followed by sleep difficulties (11.1%) and cough (9.5%). The risk prediction nomogram of age, diabetes, chronic kidney disease, vaccination status, procalcitonin, leukocytes, lymphocytes, interleukin-6 and D-dimer were included for early identification of high-risk patients with Long COVID. AUCs of the model in the training cohort and validation cohort are 0.762 and 0.713, respectively, demonstrating relatively high discrimination of the model. The calibration curve further substantiated the proximity of the nomogram's predicted outcomes to the ideal curve, the consistency between the predicted outcomes and the actual outcomes, and the potential benefits for all patients as indicated by DCA. This observation was further validated in the validation cohort. CONCLUSIONS: We established a nomogram model to predict the long COVID risk of hospitalized patients with COVID-19, and proved its relatively good predictive performance. This model is helpful for the clinical management of long COVID.


Subject(s)
COVID-19 , Nomograms , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/complications , COVID-19/diagnosis , Male , Female , Middle Aged , Prognosis , Risk Factors , Cohort Studies , Aged , Adult , Hospitalization/statistics & numerical data , Risk Assessment , Post-Acute COVID-19 Syndrome
20.
Nat Sci Sleep ; 16: 711-723, 2024.
Article in English | MEDLINE | ID: mdl-38863482

ABSTRACT

Purpose: The reciprocal comorbidity of obstructive sleep apnea (OSA) and body mass index (BMI) has been observed, yet the shared genetic architecture between them remains unclear. This study aimed to explore the genetic overlaps between them. Methods: Summary statistics were acquired from the genome-wide association studies (GWASs) on OSA (Ncase = 41,704; Ncontrol = 335,573) and BMI (Noverall = 461,460). A comprehensive genome-wide cross-trait analysis was performed to quantify global and local genetic correlation, infer the bidirectional causal relationships, detect independent pleiotropic loci, and investigate potential comorbid genes. Results: A positive significant global genetic correlation between OSA and BMI was observed (r g = 0.52, P = 2.85e-122), which was supported by three local signal. The Mendelian randomization analysis confirmed bidirectional causal associations. In the meta-analysis of cross-traits GWAS, a total of 151 single-nucleotide polymorphisms were found to be pleiotropic between OSA and BMI. Additionally, we discovered that the genetic association between OSA and BMI is concentrated in 12 brain regions. Finally, a total 134 expression-tissue pairs were observed to have a significant impact on both OSA and BMI within the specified brain regions. Conclusion: Our comprehensive genome-wide cross-trait analysis indicates a shared genetic architecture between OSA and BMI, offering new perspectives on the possible mechanisms involved.

SELECTION OF CITATIONS
SEARCH DETAIL