Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 518
Filter
1.
Water Res ; 261: 122005, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38968733

ABSTRACT

Organic loading rate (OLR) is crucial for determining the stability of dry anaerobic digestion (AD). Digestate recirculation contributes to reactor stability and enhances methane production. Nevertheless, the understanding of how OLR and digestate recirculation affect the abundance and diversity of antibiotics and antibiotic resistance genes (ARGs), as well as the mechanisms involved in the dissemination of ARGs, remains limited. This study thoroughly investigated this critical issue through a long-term pilot-scale experiment. The metabolome analyses revealed the enrichment of various antibiotics, such as aminoglycoside, tetracycline, and macrolide, under low OLR conditions (OLR ≤ 4.0 g·VS/L·d) and the reactor instability. Antibiotics abundance decreased by approximately 19.66-31.69 % during high OLR operation (OLR ≥ 6.0 g·VS/L·d) with digestate recirculation. The metagenome analyses demonstrated that although low OLR promoted reactor stability, it facilitated the proliferation of antibiotic-resistant bacteria, such as Pseudomonas, and triggered functional profiles related to ATP generation, oxidative stress response, EPS secretion, and cell membrane permeability, thereby facilitating horizontal gene transfer (HGT) of ARGs. However, under stable operation at an OLR of 6.0 g·VS/L·d, there was a decrease in ARGs abundance but a notable increase in human pathogenic bacteria (HPB) and mobile genetic elements (MGEs). Subsequently, during reactor instability, the abundance of ARGs and HPB increased. Notably, during digestate recirculation at OLR levels of 6.0 and 7.0 g·VS/L·d, the process attenuated the risk of ARGs spread by reducing the diversity of ARGs hosts, minimizing interactions among ARGs hosts, ARGs, and MGEs, and weakening functional profiles associated with HGT of ARGs. Overall, digestate recirculation aids in reducing the abundance of antibiotics and ARGs under high OLR conditions. These findings provide advanced insights into how OLR and digestate recirculation affect the occurrence patterns of antibiotics and ARGs in dry AD.

2.
Article in English | MEDLINE | ID: mdl-38967079

ABSTRACT

BACKGROUND: Osteosarcoma is considered as the most prevalent form of primary malignant bone cancer, prompting a pressing need for novel therapeutic options. Arnicolide D, a sesquiterpene lactone derived from the traditional Chinese herbal medicine Centipeda minima (known as E Bu Shi Cao in Chinese), showed anticancer efficacy against several kinds of cancers. However, its effect on osteosarcoma remains unclear. OBJECTIVE: This study aimed to investigate the anticancer activity of arnicolide D and the underlying molecular mechanism of its action in osteosarcoma cells, MG63 and U2OS. METHODS: Cell viability and proliferation were evaluated through MTT assay and colony formation assay following 24 h and 48 h treatment with different concentrations of arnicolide D. Flow cytometry was employed to examine cell cycle progression and apoptosis after 24 h treatment of arnicolide D. Western blotting was performed to determine the expression of the PI3k, Akt and m-TOR and their phosphorylated forms. RESULTS: Our findings revealed that arnicolide D treatment resulted in a significant reduction in cell viability, the inhibition of proliferation, and the induction of apoptosis and cell cycle arrest in the G2/M phase. Furthermore, arnicolide D could inhibit the activation of PI3K/Akt/mTOR pathway in osteosarcoma cells. CONCLUSION: Based on our results, arnicolide D demonstrated significant anti-osteosarcoma activity and held the potential to be considered as a therapeutic candidate for osteosarcoma in the future.

3.
Biomed Pharmacother ; 177: 117082, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972152

ABSTRACT

Recurrent spontaneous abortion refers to the occurrence of two or more spontaneous abortions before or during the early stages of pregnancy. The immune system plays a crucial role in the maintenance of pregnancy and embryo implantation. Various immune cells, cytokines, and immune regulatory pathways are involved in the complex immune balance required for a stable pregnancy. Studies suggest that immune abnormalities may be associated with some recurrent spontaneous abortion cases, particularly those involving the dysregulation of immune cell function, autoimmune responses, and placental immunity. In terms of treatment, interventions targeting immune mechanisms are crucial. Various therapeutic approaches, including immunomodulatory drugs, immunoadsorption therapies, and immunocellular therapies, are continually being researched and developed. These approaches aim to restore the immune balance, enhance the success rate of pregnancies, and provide more effective treatment options for patients with recurrent spontaneous abortion.

4.
Pharmacol Res ; : 107252, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945380

ABSTRACT

Adagrasib (MRTX849), an approved and promising KRAS G12C inhibitor, has shown the promising results for treating patients with advanced non-small cell lung cancer (NSCLC) or colorectal cancer (CRC) harboring KRAS-activating mutations. However, emergence of the acquired resistance limits its long-term efficacy and clinical application. Further understanding of the mechanism of the acquired resistance is crucial for developing more new effective therapeutic strategies. Herein, we firstly found a new connection between the acquired resistance to MRTX849 and nuclear factor erythroid 2-related factor 2 (Nrf2). The expression levels of Nrf2 and GLS1 proteins were substantially elevated in different CRC cell lines with the acquired resistance to MRTX849 in comparison with their corresponding parental cell lines. Next, we discovered that RA-V, one of natural cyclopeptides isolated from the roots of Rubia yunnanensis, could restore the response of resistant CRC cells to MRTX849. The results of molecular mechanisms showed that RA-V suppressed Nrf2 protein through the ubiquitin-proteasome-dependent degradation, leading to the induction of oxidative and ER stress, and DNA damage in CRC cell lines. Consequently, RA-V reverses the resistance to MRTX849 by inhibiting the Nrf2/GLS1 axis, which shows the potential for further developing into one of novel adjuvant therapies of MRTX849.

5.
Acta Pharmacol Sin ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862818

ABSTRACT

Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus characterized by heart failure and cardiac remodeling. Previous studies show that tetrahydroberberrubine (THBru) retrogrades cardiac aging by promoting PHB2-mediated mitochondrial autophagy and prevents peritoneal adhesion by suppressing inflammation. In this study we investigated whether THBru exerted protective effect against DCM in db/db mice and potential mechanisms. Eight-week-old male db/db mice were administered THBru (25, 50 mg·kg-1·d-1, i.g.) for 12 weeks. Cardiac function was assessed using echocardiography. We showed that THBru administration significantly improved both cardiac systolic and diastolic function, as well as attenuated cardiac remodeling in db/db mice. In primary neonatal mouse cardiomyocytes (NMCMs), THBru (20, 40 µM) dose-dependently ameliorated high glucose (HG)-induced cell damage, hypertrophy, inflammatory cytokines release, and reactive oxygen species (ROS) production. Using Autodock, surface plasmon resonance (SPR) and DARTS analyses, we revealed that THBru bound to the domain of the receptor for advanced glycosylation end products (RAGE), subsequently leading to inactivation of the PI3K/AKT/NF-κB pathway. Importantly, overexpression of RAGE in NMCMs reversed HG-induced inactivation of the PI3K/AKT/NF-κB pathway and subsequently counteracted the beneficial effects mediated by THBru. We conclude that THBru acts as an inhibitor of RAGE, leading to inactivation of the PI3K/AKT/NF-κB pathway. This action effectively alleviates the inflammatory responses and oxidative stress in cardiomyocytes, ultimately leading to ameliorated DCM.

6.
Anal Chim Acta ; 1312: 342767, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834270

ABSTRACT

BACKGROUND: Surface-enhanced Raman spectroscopy (SERS) has gained increasing importance in molecular detection due to its high specificity and sensitivity. Complex biofluids (e.g., cell lysates and serums) typically contain large numbers of different bio-molecules with various concentrations, making it extremely challenging to be reliably and comprehensively characterized via conventional single SERS spectra due to uncontrollable electromagnetic hot spots and irregular molecular motions. The traditional approach of directly reading out the single SERS spectra or calculating the average of multiple spectra is less likely to take advantage of the full information of complex biofluid systems. RESULTS: Herein, we propose to construct a spectral set with unordered multiple SERS spectra as a novel representation strategy to characterize full molecular information of complex biofluids. This new SERS representation not only contains details from each single spectra but captures the temporal/spatial distribution characteristics. To address the ordering-independent property of traditional chemometric methods (e.g., the Euclidean distance and the Pearson correlation coefficient), we introduce Wasserstein distance (WD) to quantitatively and comprehensively assess the quality of spectral sets on biofluids. WD performs its superiority for the quantitative assessment of the spectral sets. Additionally, WD benefits from its independence of the ordering of spectra in a spectral set, which is undesirable for traditional chemometric methods. With experiments on cell lysates and human serums, we successfully achieve the verification for the reproducibility between parallel samples, the uniformity at different positions in the same sample, the repeatability from multiple tests at one location of the same sample, and the cardinality effect of the spectral set. SERS spectral sets also manage to distinguish different classes of human serums and achieve higher accuracy than the traditional prostate-specific antigen in prostate cancer classification. SIGNIFICANCE: The proposed SERS spectral set is a robust representation approach in accessing full information of biological samples compared to relying on a single or averaged spectra in terms of reproducibility, uniformity, repeatability, and cardinality effect. The application of WD further demonstrates the effectiveness and robustness of spectral sets in characterizing complex biofluid samples, which extends and consolidates the role of SERS.


Subject(s)
Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Humans , Surface Properties , Metal Nanoparticles/chemistry , Male
7.
Pak J Pharm Sci ; 37(2): 327-336, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767100

ABSTRACT

Pancreatic cancer (PC) is heterogeneous cancer having a high death rate and poor prognosis. The perioperative variables, such as anesthetics, may affect the cancer progression. Ciprofol is an intravenous anesthetic widely used recently. We aimed to explore the influence of ciprofol on PC and investigate its possible pathway. The proliferation, migration and invasion roles and apoptosis of ciprofol in human PC cells were examined using methylthiazolyldiphenyl-tetrazolium bromide, trans well and flow cytometery analysis. Then the putative targeted genes were examined using RNA-sequencing (RNA-seq) analysis. When differentially expressed genes (DEGs) were found, a protein-protein interaction network and pathway analyses were made. Moreover, MMP1 gene expression was confirmed in PC cells using quantitative real-time PCR. PANC-1 cells of PC were significantly suppressed with ciprofol in a dose-dependent and time-dependent way, and 20µg/mL ciprofol significantly suppressed tumor cell aggressiveness. Additionally, the RNA-seq analysis demonstrated that ciprofol controls the expression of 929 DEGs. 5 of 20 hub genes with increased connection were selected. Survival analysis demonstrated that MMP1 may be involved in the carcinogenesis and establishment of PC, reflecting the possible roles associated with ciprofol. Moreover, one target miRNA (hsa-miR-330-5p) of MMP1 was identified.


Subject(s)
Cell Movement , Cell Proliferation , Matrix Metalloproteinase 1 , Neoplasm Invasiveness , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Cell Proliferation/drug effects , Cell Movement/drug effects , Cell Line, Tumor , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Apoptosis/drug effects , Protein Interaction Maps
8.
Zhen Ci Yan Jiu ; 49(5): 499-505, 2024 May 25.
Article in English, Chinese | MEDLINE | ID: mdl-38764121

ABSTRACT

OBJECTIVES: To observe the effect of mind-regulating acupuncture on pain intensity, sleep quality, negative emotion in patients with postherpetic neuralgia (PHN), and evaluate the clinical effect of mind-regulating acupuncture combined with surrounding needling and heavy moxibustion at Ashi points (Extra) in treatment of PHN. METHODS: The patients with PHN were randomly divided into a control group (35 cases, 2 cases dropped out) and a comprehensive therapy group (35 cases). The patients in the control group were treated with surrounding needling and heavy moxibustion at Ashi points. In the comprehensive therapy group, the mind-regulating acupuncture therapy was delivered besides the treatment as the control group. The treatment was given once daily, one course of treatment was composed of 6 days and 2 courses were required in the 2 groups. Before and after treatment, the pain conditions were assessed using pain rating index (PRI), visual analogue scale (VAS) and present pain intensity (PPI), the negative emotions were assessed using Hamilton anxiety scale (HAMA) and Hamilton depression scale (HAMD), and the sleep quality with Pittsburgh sleep quality index (PSQI). One week before and one week after treatment, the average sleep time was recorded. The therapeutic effect of 2 groups was evaluated. The effective cases of 2 groups were followed up in 2 months after treatment completion and the recurrence of neuralgia was recorded. RESULTS: There were no statistical differences in the above indicators between the 2 groups before treatment. After 2 courses of treatment, the scores of PRI, VAS, PPI, HAMA, HAMD and PSQI were reduced when compared with those before treatment in the patients of the 2 groups (P<0.05), and the average sleep time was increased (P<0.05). The scores of PRI, VAS, PPI, HAMA, HAMD and PSQI in the comprehensive therapy group, as well as the average sleep time were all improved when compared with those of the control group (P<0.05). The total effective rate in the comprehensive therapy group (34/35, 97.14%) was higher than that of the control group (27/33, 81.82%, P<0.05) and the recurrence rate was lower (ï¼»2/34, 5.88%ï¼½vsï¼»8/27, 29.63%ï¼½, P<0.05). CONCLUSIONS: The combination of mind-regulating acupuncture with surrounding needling and heavy moxibustion at Ashi acupoint can effectively relieve PHN. Compared with the traditional surrounding acupuncture in pain area combined with moxibustion at Ashi points, this comprehensive therapy is more effective for ameliorating pain intensity, improving sleep quality and reducing negative emotions. It is also effective for declining the recurrence.


Subject(s)
Acupuncture Therapy , Neuralgia, Postherpetic , Sleep Quality , Humans , Neuralgia, Postherpetic/therapy , Neuralgia, Postherpetic/psychology , Male , Middle Aged , Female , Aged , Pilot Projects , Treatment Outcome , Emotions , Adult , Acupuncture Points
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124461, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38759393

ABSTRACT

Esophageal cancer is one of the leading causes of cancer-related deaths worldwide. The identification of residual tumor tissues in the surgical margin of esophageal cancer is essential for the treatment and prognosis of cancer patients. But the current diagnostic methods, either pathological frozen section or paraffin section examination, are laborious, time-consuming, and inconvenient. Raman spectroscopy is a label-free and non-invasive analytical technique that provides molecular information with high specificity. Here, we report the use of a portable Raman system and machine learning algorithms to achieve accurate diagnosis of esophageal tumor tissue in surgically resected specimens. We tested five machine learning-based classification methods, including k-Nearest Neighbors, Adaptive Boosting, Random Forest, Principal Component Analysis-Linear Discriminant Analysis, and Support Vector Machine (SVM). Among them, SVM shows the highest accuracy (88.61 %) in classifying the esophageal tumor and normal tissues. The portable Raman system demonstrates robust measurements with an acceptable focal plane shift of up to 3 mm, which enables large-area Raman mapping on resected tissues. Based on this, we finally achieve successful Raman visualization of tumor boundaries on surgical margin specimens, and the Raman measurement time is less than 5 min. This work provides a robust, convenient, accurate, and cost-effective tool for the diagnosis of esophageal cancer tumors, advancing toward Raman-based clinical intraoperative applications.


Subject(s)
Esophageal Neoplasms , Machine Learning , Spectrum Analysis, Raman , Support Vector Machine , Spectrum Analysis, Raman/methods , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/pathology , Humans , Discriminant Analysis , Principal Component Analysis , Algorithms
10.
Neurol Sci ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748074

ABSTRACT

BACKGROUND: The objective is to analyze and review the clinical, laboratory, and neuroimaging characteristics of rheumatoid meningitis (RM) in six patients with known rheumatoid arthritis (RA). METHODS: We performed a retrospective review of patients diagnosed with RM from August 2012 to June 2023. To identify the cases, we used medical term search engines and the hospital´s radiology case database. Clinical information and laboratory findings were gathered from the medical records. A neuroradiologist with five years of experience reviewed and analyzed the RM to determine the characteristics findings of RM. RESULTS: Six patients with RM are included. Seizures along with headaches were among the clinical signs that were documented. All the patients had high levels of rheumatoid factor (RF) and anti-cyclic citrullinated peptides (ACPA) in the peripheral blood. Biopsy in two cases confirmed typical rheumatoid nodules. Leptomeningeal enhancement was found bilaterally in all cases and was predominantly found in the frontoparietal region. "Mismatch DWI/FLAIR" was found in five patients. Bilateral subdural collections could be found in two patients. Brain PET scan revealed increased metabolism in two cases. CONCLUSION: Rheumatoid meningitis is a rare complication of rheumatoid arthritis (RA) with challenging clinical diagnosis due to non-specific symptoms. This study highlights the importance of MR in detecting characteristic neuroimaging patterns, including "mismatch DWI/FLAIR", to aid in early diagnosis. Increased awareness of this condition may facilitate timely intervention and improve prognosis. These results still need to be verified by large studies.

11.
ACS Omega ; 9(19): 20966-20975, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764644

ABSTRACT

There is an urgent requirement for a novel treatment strategy for drug-resistant Staphylococcus aureus (S. aureus) infection. Antisense antimicrobials are promising antimicrobials, and efficient drug delivery systems are necessary for the further development of antisense antimicrobials. To develop new antisense drugs and further improve delivery efficiency and safety, we designed and screened new antisense sequences and optimized dendritic polypeptide nanoparticles (DP-AD) discovered in previous studies. The N/P ratio is optimized from 8:1 to 6:1, and the positive charge number of the optimized DP-AD is studied comprehensively. The results show that the N/P ratio and positive charge number have no significant effect on the particle size distribution and transport efficiency of DP-AD. Reducing the N/P ratio can significantly reduce the cytotoxicity of DP-AD, but it does not affect its delivery efficiency and antibacterial activity. However, in drug-resistant strains, the antibacterial activity of DP-AD76:1 with 10 positive charges is higher than that of DP-AD86:1 with 8 positive charges. Our research discovered a novel ASOs targeting ftsZ and concluded that DP-AD76:1 with 10 positive charges was the optimal choice at the current stage, which provided a promising strategy for the treatment of drug-resistant S. aureus.

12.
Front Oncol ; 14: 1283164, 2024.
Article in English | MEDLINE | ID: mdl-38634049

ABSTRACT

Introduction: Pancreatic cancer (PC) is a malignancy with poor prognosis. This investigation aimed to determine the relevant genes that affect the prognosis of PC and investigate their relationship with immune infiltration. Methods: : First, we acquired PC single-cell chip data from the GEO database to scrutinize dissimilarities in immune cell infiltration and differential genes between cancerous and adjacent tissues. Subsequently, we combined clinical data from TCGA to identify genes relevant to PC prognosis. Employing Cox and Lasso regression analyses, we constructed a multifactorial Cox prognostic model, which we subsequently confirmed. The prognostic gene expression in PC was authenticated using RT-PCR. Moreover, we employed the TIMER online database to examine the relationship between the expression of prognostic genes and T and B cell infiltration. Additionally, the expression of GPRC5A and its correlation with B cells infiltration and patient prognosis were ascertained in tissue chips using multiple immune fluorescence staining. Results: The single-cell analysis unveiled dissimilarities in B-cell infiltration between cancerous and neighboring tissues. We developed a prognostic model utilizing three genes, indicating that patients with high-risk scores experienced a more unfavorable prognosis. Immune infiltration analysis revealed a significant correlation among YWHAZ, GPRC5A, and B cell immune infiltration. In tissue samples, GPRC5A exhibited substantial overexpression and a robust association with an adverse prognosis, demonstrating a positive correlation with B cell infiltration. Conclusion: GPRC5A is an independent risk factor in PC and correlated with B cell immune infiltration in PC. These outcomes indicated that GPRC5A is a viable target for treating PC.

13.
J Hazard Mater ; 470: 134222, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583199

ABSTRACT

Organic-contaminated shallow aquifers have become a global concern of groundwater contamination, yet little is known about the coupled effects of hydrodynamic-thermal-chemical-microbial (HTCM) multi-field on organic contaminant transport and transformation over a short time in aquifers. Therefore, this study proposed a quick and efficient field experimental method for the transport-transformation of contaminants under multi-field coupling to explore the relationship between organic contaminants (total petroleum hydrocarbon (TPH), polycyclic aromatic hydrocarbons (PAHs), benzene-toluene-ethylbenzene-xylene (BTEX) and phthalates acid esters (PAEs)) and multi-field factors. The results showed that hydrodynamics (affecting pH, p < 0.001) and temperature (affecting dissolved oxygen, pH and HCO3-, p < 0.05) mainly affected the organic contaminants indirectly by influencing the hydrochemistry to regulate redox conditions in the aquifer. The main degradation reactions of the petroleum hydrocarbons (TPH, PAHs and BTEX) and PAEs in the aquifer were sulfate reduction and nitrate reduction, respectively. Furthermore, the organic contamination was directly influenced by microbial communities, whose spatial patterns were shaped by the combined effects of the spatial pattern of hydrochemistry (induced by the organic contamination pressure) and other multi-field factors. Overall, our findings imply that the spatiotemporal patterns of organic contaminants are synergistically regulated by HTCM, with distinct mechanisms for petroleum hydrocarbons and PAEs.

14.
Foods ; 13(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611286

ABSTRACT

Rumexpatientia L. ×Rumextianshanicus A. Los (RRL), known as "protein grass" in China, was recognized as a new food ingredient in 2021. However, the cultivation and product development of RRL are still at an early stage, and no peptide research has been reported. In this study, two novel antioxidant peptides, LKPPF and LPFRP, were purified and identified from RRL and applied to H2O2-induced HepG2 cells to investigate their antioxidant properties. It was shown that 121 peptides were identified by ultrafiltration, gel filtration chromatography, and LC-MS/MS, while computer simulation and molecular docking indicated that LKPPF and LPFRP may have strong antioxidant properties. Both peptides were not cytotoxic to HepG2 cells at low concentrations and promoted cell growth, which effectively reduced the production of intracellular ROS and MDA, and increased cell viability and the enzymatic activities of SOD, GSH-Px, and CAT. Therefore, LKPPF and LPFRP, two peptides, possess strong antioxidant activity, which provides a theoretical basis for their potential as food additives or functional food supplements, but still need to be further investigated through animal models as well as cellular pathways.

15.
Mater Today Bio ; 25: 101009, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38445012

ABSTRACT

The short lifespan of active oxygen species and depressed O2 level during ferroptosis treatment in tumor cells weaken ferroptosis therapy. How to improve the utilization efficiency of active oxygen species generated in real time is pivotal for anticancer treatment. Herein, the tirapazamine (TPZ) loaded polydopamine-Fe nanoparticles (PDA-Fe-TPZ) was modified with unsaturated liposome (Lip), which was constructed to overcome the drawbacks of traditional ferroptosis therapy. The Lip@PDA-Fe-TPZ nanoliposomes can react with H2O2 to produce •OH by Fenton reaction, which then attacks Lip and transforms into radical intermediate (L•) and phospholipid peroxide radical (LOO•) to avoid the annihilation of •OH. The introduced Lip enhances lipid peroxidation and promotes oxygen consumption, resulting in increased hypoxia at tumor site. The introduced TPZ can be triggered by reductase in tumor cells under hypoxia, which can reduce to transient oxidative free radicals by reductase enzymes and destroy the structure of the surrounding biomacromolecules, thus achieving the synergistic treatment of ferroptosis and chemotherapy. In this work, we organically combined enhanced ferrroptosis with hypoxic activated chemotherapy to achieve efficient and specific tumor killing effect, which can sever as a promising treatment of cancer in the future.

16.
Behav Brain Res ; 463: 114889, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38301932

ABSTRACT

Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by severe mitochondrial dysfunction, which is an intracellular process that is significantly compromised in the early stages of AD. Mitophagy, the selective removal of damaged mitochondria, is a potential therapeutic strategy for AD. Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, augmented autophagy and mitigated cognitive impairment. Our study revealed that rapamycin enhances cognitive function by activating mitophagy, alleviating neuronal loss, and improving mitochondrial dysfunction in 5 ×FAD mice. Interestingly, the neuroprotective effect of rapamycin in AD were negated by treatment with 3-MA, a mitophagy inhibitor. Overall, our findings suggest that rapamycin ameliorates cognitive impairment in 5 ×FAD mice via mitophagy activation and its downstream PINK1-Parkin pathway, which aids in the clearance of amyloid-ß (Aß) and damaged mitochondria. This study reveals a novel mechanism involving mitophagy regulation underlying the therapeutic effect of rapamycin in AD. This study provides new insights and therapeutic targets for rapamycin in the treatment of AD. However, there are still some shortcomings in this topic; if we can further knock out the PINK1/Parkin gene in animals or use siRNA technology, we can further confirm the experimental results.


Subject(s)
Alzheimer Disease , Mitochondrial Diseases , Mice , Animals , Mitophagy , Sirolimus/pharmacology , Alzheimer Disease/metabolism , Mitochondria/metabolism , Cognition , Ubiquitin-Protein Ligases/genetics , Mammals/metabolism
17.
Nanoscale ; 16(3): 1147-1155, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38186376

ABSTRACT

The regulation of hollow morphology, band structure modulation of solid solution, and introduction of cocatalysts greatly promote the separation of electron-hole pairs in photocatalytic processes, which is of great significance for the process of photocatalytic hydrogen evolution (PHE). In this study, we constructed Zn1-xCdxS hollow solid solution photocatalysts using template and ion exchange methods, and successfully loaded PdS quantum dots (PdS QDs) onto the solid solution through in situ sulfidation. Significantly, the 0.5 wt% PdS QDs/Zn0.6Cd0.4S composite material achieved a H2 production rate of 27.63 mmol g-1 h-1 in the PHE process. The hollow structure of the composite material enhances processes such as light reflection and scattering, the band structure modulation of the solid solution enables the electron-hole pairs to reach an optimal exciton recombination balance, and the modification of PdS QDs provides abundant sites for oxidation, thereby promoting the proton reduction and hydrogen evolution rate. This work provides valuable guidance for the rational design of efficient composite PHE catalysts with strong internal electric field.

18.
Small Methods ; : e2301405, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168901

ABSTRACT

Currently, the copolymer of dopamine (DA) and pyrrole (PY) via chemical and electrochemical oxidation usually requires additional oxidants, and lacks flexibility in regulating the size and morphology, thereby limiting the broad applications of DA-PY copolymer in biomedicine. Herein, the semiquinone radicals produced by the self-oxidation of DA is ingeniously utilized as the oxidant to initiate the following copolymerization with PY, and a series of quinone-rich polydopamine-pyrrole copolymers (PDAm -nPY) with significantly enhanced absorption in near-infrared (NIR) region without any additional oxidant assistance is obtained. Moreover, the morphology and size of PDAm -nPY can be regulated by changing the concentration of DA and PY, thereby optimizing nanoscale PDA0.05 -0.15PY particles (≈ 150 nm) with excellent NIR absorption and surface modification activity are successfully synthesized. Such PDA0.05 -0.15PY particles show effective photoacoustic (PA) imaging and photothermal therapy (PTT) against 4T1 tumors in vivo. Furthermore, other catechol derivatives can also copolymerize with PY under the same conditions. This work by fully utilizing the semiquinone radical active intermediates produced through the self-oxidation of DA reduces the dependence on external oxidants in the synthesis of composite materials and predigests the preparation procedure, which provides a novel, simple, and green strategy for the synthesis of other newly catechol-based functional copolymers.

19.
Article in English | MEDLINE | ID: mdl-38213141

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a lethal malignancy due to its heterogeneity and aggressive behavior. Recently, somatic mutations and tumor cell interactions with the surrounding tumor immune microenvironment (TIME) have been reported to participate in HCC carcinogenesis and predict HCC progression. In this study, we aimed to investigate the association between tumor mutational burden (TMB) and TIME in HCC. Additionally, we sought to identify differentially expressed genes (DEGs) associated with HCC prognosis and progression. METHODS: The expression, clinical, and mutational data were downloaded from the cancer genome atlas (TCGA) database. The immune infiltration levels and TMB levels of the HCC samples were estimated and the samples were divided into immune cluster (ICR)-1 and 2 based on immune infiltration score and high and low TMB groups based on TMB score. Thereafter, differential gene expression analysis was conducted to identify the DEGs in the ICR1/2 and high/low TMB groups, and the intersecting DEGs were selected. Thereafter, Cox regression analysis was performed on 89 significant DEGs, among which 19 were associated with prognosis. These 19 DEGs were then used to construct a prognostic model based on their expression levels and regression coefficients. Thereafter, we analyzed the DEGs in mutant and wildtype TP53 HCC samples and identified high BCL10 and TRAF3 expression in the mutant TP53 samples. BCL10 and TRAF3 expression was detected by real-time quantitative reverse transcription PCR and immunohistochemistry, and their clinical correlation, biological function, and immune infiltration levels were analyzed by chi-square analyses, Gene Set Enrichment Analysis (GSEA), and "ssGSEA", respectively. RESULTS: The results of our study revealed that immune infiltration level was correlated with TMB and that they synergistically predicted poor prognosis of HCC patients. DEGs enriched in immune-related pathways could serve as indicators of immunotherapy response in HCC. Among these DEGs, BCL10 and TRAF3 were highly expressed in HCC tissues, especially in the mutant TP53 group, and they co-operatively exhibited immunological function, thereby affecting HCC progression and prognosis. CONCLUSION: In this study, we identified BCL10 and TRAF3 as potential prognostic indicators in HCC patients. Additionally, we found that BCL10 and TRAF3 influence TMB and TIME in HCC patients and can be used for the development of immune-based therapies for improving the long-term survival of HCC patients.

20.
J Environ Manage ; 352: 120022, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38198836

ABSTRACT

Organic contaminated sites have gained significant attention as a prominent contributor to shallow groundwater contamination. However, limited knowledge exists regarding the impact of hydrodynamic effects on microbially mediated contaminant degradation at such sites. In this study, we investigated the distribution characteristics and community structure of prokaryotic microorganisms at the selected site during both wet and dry seasons, with a particular focus on their environmental adaptations. The results revealed significant seasonal variations (P < 0.05) in the α-diversity of prokaryotes within groundwater. The dry season showed more exclusive OTUs than the wet season. The response of prokaryotic metabolism to organic pollution pressure in different seasons was explored by PICRUSt2, and enzymes associated with the degradation of organic pollutants were identified based on the predicted functions. The results showed that hormesis was considered as an adaptive response of microbial communities under pollution stress. In addition, structural equation models demonstrated that groundwater level fluctuations can, directly and indirectly, affect the abundance and diversity of prokaryotes through other factors such as oxidation reduction potential (ORP), dissolved oxygen (DO), and naphthalene (Nap). Overall, our findings imply that the taxonomic composition and functional properties of prokaryotes in groundwater in organic contaminated sites is influenced by the interaction between seasonal variations and characteristics of organic pollution. The results provide new insights into microbiological processes in groundwater systems in organic contaminated sites.


Subject(s)
Groundwater , Microbiota , Groundwater/chemistry , Environmental Pollution/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...