Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 26(8): 982-995, 2020 08.
Article in English | MEDLINE | ID: mdl-32371455

ABSTRACT

RNA-Puzzles is a collective endeavor dedicated to the advancement and improvement of RNA 3D structure prediction. With agreement from crystallographers, the RNA structures are predicted by various groups before the publication of the crystal structures. We now report the prediction of 3D structures for six RNA sequences: four nucleolytic ribozymes and two riboswitches. Systematic protocols for comparing models and crystal structures are described and analyzed. In these six puzzles, we discuss (i) the comparison between the automated web servers and human experts; (ii) the prediction of coaxial stacking; (iii) the prediction of structural details and ligand binding; (iv) the development of novel prediction methods; and (v) the potential improvements to be made. We show that correct prediction of coaxial stacking and tertiary contacts is essential for the prediction of RNA architecture, while ligand binding modes can only be predicted with low resolution and simultaneous prediction of RNA structure with accurate ligand binding still remains out of reach. All the predicted models are available for the future development of force field parameters and the improvement of comparison and assessment tools.


Subject(s)
Aptamers, Nucleotide/chemistry , RNA, Catalytic/chemistry , RNA/chemistry , Base Sequence , Ligands , Nucleic Acid Conformation , Riboswitch/genetics
2.
RNA ; 23(5): 655-672, 2017 05.
Article in English | MEDLINE | ID: mdl-28138060

ABSTRACT

RNA-Puzzles is a collective experiment in blind 3D RNA structure prediction. We report here a third round of RNA-Puzzles. Five puzzles, 4, 8, 12, 13, 14, all structures of riboswitch aptamers and puzzle 7, a ribozyme structure, are included in this round of the experiment. The riboswitch structures include biological binding sites for small molecules (S-adenosyl methionine, cyclic diadenosine monophosphate, 5-amino 4-imidazole carboxamide riboside 5'-triphosphate, glutamine) and proteins (YbxF), and one set describes large conformational changes between ligand-free and ligand-bound states. The Varkud satellite ribozyme is the most recently solved structure of a known large ribozyme. All puzzles have established biological functions and require structural understanding to appreciate their molecular mechanisms. Through the use of fast-track experimental data, including multidimensional chemical mapping, and accurate prediction of RNA secondary structure, a large portion of the contacts in 3D have been predicted correctly leading to similar topologies for the top ranking predictions. Template-based and homology-derived predictions could predict structures to particularly high accuracies. However, achieving biological insights from de novo prediction of RNA 3D structures still depends on the size and complexity of the RNA. Blind computational predictions of RNA structures already appear to provide useful structural information in many cases. Similar to the previous RNA-Puzzles Round II experiment, the prediction of non-Watson-Crick interactions and the observed high atomic clash scores reveal a notable need for an algorithm of improvement. All prediction models and assessment results are available at http://ahsoka.u-strasbg.fr/rnapuzzles/.


Subject(s)
RNA, Catalytic/chemistry , Riboswitch , Aminoimidazole Carboxamide/chemistry , Aminoimidazole Carboxamide/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Dinucleoside Phosphates/metabolism , Endoribonucleases/chemistry , Endoribonucleases/metabolism , Glutamine/chemistry , Glutamine/metabolism , Ligands , Models, Molecular , Nucleic Acid Conformation , RNA, Catalytic/metabolism , Ribonucleotides/chemistry , Ribonucleotides/metabolism , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism
3.
Elife ; 4: e07600, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-26035425

ABSTRACT

Accelerating discoveries of non-coding RNA (ncRNA) in myriad biological processes pose major challenges to structural and functional analysis. Despite progress in secondary structure modeling, high-throughput methods have generally failed to determine ncRNA tertiary structures, even at the 1-nm resolution that enables visualization of how helices and functional motifs are positioned in three dimensions. We report that integrating a new method called MOHCA-seq (Multiplexed •OH Cleavage Analysis with paired-end sequencing) with mutate-and-map secondary structure inference guides Rosetta 3D modeling to consistent 1-nm accuracy for intricately folded ncRNAs with lengths up to 188 nucleotides, including a blind RNA-puzzle challenge, the lariat-capping ribozyme. This multidimensional chemical mapping (MCM) pipeline resolves unexpected tertiary proximities for cyclic-di-GMP, glycine, and adenosylcobalamin riboswitch aptamers without their ligands and a loose structure for the recently discovered human HoxA9D internal ribosome entry site regulon. MCM offers a sequencing-based route to uncovering ncRNA 3D structure, applicable to functionally important but potentially heterogeneous states.


Subject(s)
Nucleic Acid Conformation , RNA Folding , RNA, Untranslated/chemistry , RNA, Untranslated/metabolism , Humans , Models, Molecular
4.
Methods Enzymol ; 553: 35-64, 2015.
Article in English | MEDLINE | ID: mdl-25726460

ABSTRACT

Reliable modeling of RNA tertiary structures is key to both understanding these structures' roles in complex biological machines and to eventually facilitating their design for molecular computing and robotics. In recent years, a concerted effort to improve computational prediction of RNA structure through the RNA-Puzzles blind prediction trials has accelerated advances in the field. Among other approaches, the versatile and expanding Rosetta molecular modeling software now permits modeling of RNAs in the 100-300 nucleotide size range at consistent subhelical (~1 nm) resolution. Our laboratory's current state-of-the-art methods for RNAs in this size range involve Fragment Assembly of RNA with Full-Atom Refinement (FARFAR), which optimizes RNA conformations in the context of a physically realistic energy function, as well as hybrid techniques that leverage experimental data to inform computational modeling. In this chapter, we give a practical guide to our current workflow for modeling RNA three-dimensional structures using FARFAR, including strategies for using data from multidimensional chemical mapping experiments to focus sampling and select accurate conformations.


Subject(s)
Models, Molecular , RNA/chemistry , Software , Cluster Analysis , Nucleic Acid Conformation , Software Design , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...