Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 98(1): e0155823, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38174926

ABSTRACT

Enterovirus A71 (EV-A71) can induce severe neurological complications and even fatal encephalitis in children, and it has caused several large outbreaks in Taiwan since 1998. We previously generated VP1 codon-deoptimized (VP1-CD) reverse genetics (rg) EV-A71 viruses (rgEV-A71s) that harbor a high-fidelity (HF) 3D polymerase. These VP1-CD-HF rgEV-A71s showed lower replication kinetics in vitro and decreased virulence in an Institute of Cancer Research (ICR) mouse model of EV-A71 infection, while still retaining their antigenicity in comparison to the wild-type virus. In this study, we aimed to further investigate the humoral and cellular immune responses elicited by VP1-CD-HF rgEV-A71s to assess the potential efficacy of these EV-A71 vaccine candidates. Following intraperitoneal (i.p.) injection of VP1-CD-HF rgEV-A71s in mice, we observed a robust induction of EV-A71-specific neutralizing IgG antibodies in the antisera after 21 days. Splenocytes isolated from VP1-CD-HF rgEV-A71s-immunized mice exhibited enhanced proliferative activities and cytokine production (IL-2, IFN-γ, IL-4, IL-6, and TNF-α) upon re-stimulation with VP1-CD-HF rgEV-A71, as compared to control mice treated with adjuvant only. Importantly, administration of antisera from VP1-CD-HF rgEV-A71s-immunized mice protected against lethal EV-A71 challenge in neonatal mice. These findings highlight that our generated VP1-CD-HF rgEV-A71 viruses are capable of inducing both cellular and humoral immune responses, supporting their potential as next-generation EV-A71 vaccines for combating EV-A71 infection.IMPORTANCEEV-A71 can cause severe neurological diseases and cause death in young children. Here, we report the development of synthetic rgEV-A71s with the combination of codon deoptimization and high-fidelity (HF) substitutions that generate genetically stable reverse genetics (rg) viruses as potential attenuated vaccine candidates. Our work provides insight into the development of low-virulence candidate vaccines through a series of viral genetic editing for maintaining antigenicity and genome stability and suggests a strategy for the development of an innovative next-generation vaccine against EV-A71.


Subject(s)
Capsid Proteins , Enterovirus A, Human , Enterovirus Infections , RNA-Dependent RNA Polymerase , Animals , Mice , Antibodies, Viral/immunology , Codon , Enterovirus A, Human/genetics , Enterovirus Infections/immunology , Vaccines, Attenuated , Capsid Proteins/genetics , Immunity, Humoral , Immunity, Cellular , Antibodies, Neutralizing/immunology , Viral Vaccines , Mice, Inbred ICR , Mice, Inbred BALB C , RNA-Dependent RNA Polymerase/genetics
2.
Antiviral Res ; 212: 105569, 2023 04.
Article in English | MEDLINE | ID: mdl-36822369

ABSTRACT

Enterovirus A71 (EV-A71) is a non-enveloped virus possessing 4 capsid proteins: VP1-VP4. The outermost capsid protein, VP1, plays roles in both antigenicity and virulence of the virus. The concept of generating other EV-A71 genotypes of reverse genetics (rg) viruses by replacing VP1 can be made possible with synthetic biotechnology, allowing us to redesign organisms, creating unavailable ones. To determine suitable vaccine candidates against EV-A71 infections, we combined synthetic biotechnology, rg-virus production and high-fidelity determinants to produce genetically stable viruses. With the use of antigenic cartography, we are able to view the antigenic distance among various points. We analyzed and generated various EV-A71 VP1 sequences from Taiwan and Southeast Asian (SEA) countries, which were then used to produce recombinant rg-viruses and the viral proteins were purified for immunization of mice and rabbits. Antisera against various EV-A71 genotypes were used in neutralization assays against various Taiwan and SEA EV-A71 genotypes. Based on neutralization data from mice and rabbit antisera, we found that antisera produced from several genotypes were able to effectively neutralize the various Taiwan and SEA EV-A71 genotypes. Additionally, comparing the antigenic maps produced from mouse, rabbit and human antisera against different EV-A71 genotypes, a difference in clustering was seen and the spacing between points also differed. Based on antigenic mapping and neutralizing activities, B4 7008-HF and C4 M79 may be good potential vaccine candidates against EV-A71.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Animals , Humans , Rabbits , Enterovirus/genetics , Enterovirus A, Human/genetics , Taiwan , Antigens, Viral/genetics , Capsid Proteins/metabolism
3.
Front Immunol ; 13: 1023943, 2022.
Article in English | MEDLINE | ID: mdl-36458016

ABSTRACT

Broadly neutralizing ability is critical for developing the next-generation SARS-CoV-2 vaccine. We collected sera samples between December 2021-January 2022 from 113 Taiwan naïve participants after their second dose of homologous vaccine (AZD1222, mRNA-1273, BNT162-b2, and MVC-COV1901) and compared the differences in serological responses of various SARS-CoV-2 vaccines. Compared to AZD1222, the two mRNA vaccines could elicit a higher level of anti-S1-RBD binding antibodies with higher broadly neutralizing ability evaluated using pseudoviruses of various SARS-CoV-2 lineages. The antigenic maps produced from the neutralization data implied that Omicron represents very different antigenic characteristics from the ancestral lineage. These results suggested that constantly administering the vaccine with ancestral Wuhan spike is insufficient for the Omicron outbreak. In addition, we found that anti-ACE2 autoantibodies were significantly increased in all four vaccinated groups compared to the unvaccinated pre-pandemic group, which needed to be investigated in the future.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , ChAdOx1 nCoV-19 , Taiwan/epidemiology , COVID-19/prevention & control
4.
Viruses ; 14(10)2022 10 20.
Article in English | MEDLINE | ID: mdl-36298861

ABSTRACT

Coxsackievirus A16 (CVA16) is well known for causing hand-foot-and-mouth disease (HFMD) and outbreaks were frequently reported in Taiwan in the past twenty years. The epidemiology and genetic variations of CVA16 in Taiwan from 1998 to 2021 were analyzed in this study. CVA16 infections usually occurred in early summer and early winter, and showed increased incidence in 1998, 2000-2003, 2005, 2007-2008, and 2010 in Taiwan. Little or no CVA16 was detected from 2017 to 2021. CVA16 infection was prevalent in patients between 1 to 3 years old. A total of 69 isolates were sequenced. Phylogenetic analysis based on the VP1 region showed that CVA16 subgenotype B1 was dominantly isolated in Taiwan from 1998 to 2019, and B2 was identified only from isolates collected in 1999 and 2000. There was a high frequency of synonymous mutations in the amino acid sequences of the VP1 region among CVA16 isolates, with the exception of position 145 which showed positive selection. The recombination analysis of the whole genome of CVA16 isolates indicated that the 5'-untranslated region and the non-structural protein region of CVA16 subgenotype B1 were recombined with Coxsackievirus A4 (CVA4) and enterovirus A71 (EVA71) genotype A, respectively. The recombination pattern of subgenotype B2 was similar to B1, however, the 3D region was similar to EVA71 genotype B. Cross-neutralization among CVA16 showed that mouse antisera from various subgenotypes viruses can cross-neutralize different genotype with high neutralizing antibody titers. These results suggest that the dominant CVA16 genotype B1 can serve as a vaccine candidate for CVA16.


Subject(s)
Enterovirus A, Human , Enterovirus , Hand, Foot and Mouth Disease , Vaccines , Mice , Animals , Phylogeny , Taiwan/epidemiology , Hand, Foot and Mouth Disease/epidemiology , Hand, Foot and Mouth Disease/prevention & control , Genotype , 5' Untranslated Regions , Immune Sera , Antibodies, Neutralizing/genetics , China/epidemiology , Enterovirus A, Human/genetics
5.
Front Microbiol ; 13: 894200, 2022.
Article in English | MEDLINE | ID: mdl-35865937

ABSTRACT

Due to the nature of RNA viruses, their high mutation rates produce a population of closely related but genetically diverse viruses, termed quasispecies. To determine the role of quasispecies in DENV disease severity, 22 isolates (10 from mild cases, 12 from fatal cases) were obtained, amplified, and sequenced with Next Generation Sequencing using the Illumina MiSeq platform. Using variation calling, unique wildtype nucleotide positions were selected and analyzed for variant nucleotides between mild and fatal cases. The analysis of variant nucleotides between mild and fatal cases showed 6 positions with a significant difference of p < 0.05 with 1 position in the structural region, and 5 positions in the non-structural (NS) regions. All variations were found to have a higher percentage in fatal cases. To further investigate the genetic changes that affect the virus's properties, reverse genetics (rg) viruses containing substitutions with the variations were generated and viral growth properties were examined. We found that the virus variant rgNS5-T7812G (G81G) had higher replication rates in both Baby hamster kidney cells (BHK-21) and Vero cells while rgNS5-C9420A (A617A) had a higher replication rate only in BHK-21 cells compared to wildtype virus. Both variants were considered temperature sensitive whereby the viral titers of the variants were relatively lower at 39°C, but was higher at 35 and 37°C. Additionally, the variants were thermally stable compared to wildtype at temperatures of 29, 37, and 39°C. In conclusion, viral quasispecies found in isolates from the 2015 DENV epidemic, resulted in variations with significant difference between mild and fatal cases. These variations, NS5-T7812G (G81G) and NS5-C9420A (A617A), affect viral properties which may play a role in the virulence of DENV.

6.
Viruses ; 14(5)2022 04 28.
Article in English | MEDLINE | ID: mdl-35632667

ABSTRACT

Highly pathogenic avian influenza (HPAI) clade 2.3.4.4 viruses have been reported to be the source of infections in several outbreaks in the past decades. In a previous study, we screened out a broad-spectrum virus strain, H5N6-Sichuan subtype, by using a lentiviral pseudovirus system. In this project, we aimed to investigate the potential of H5N6 virus-like particles (VLPs) serving as a broad-spectrum vaccine candidate against H5Nx viruses. We cloned the full-length M1 gene and H5, N6 genes derived from the H5N6-Sichuan into pFASTBac vector and generated the VLPs using the baculovirus-insect cell system. H5N6 VLPs were purified by sucrose gradient centrifugation, and the presence of H5, N6 and M1 proteins was verified by Western blot and SDS-PAGE. The hemagglutination titer of H5N6 VLPs after purification reached 5120 and the particle structure remained as viewed by electron microscopy. The H5N6 VLPs and 293T mammalian cell-expressed H5+N6 proteins were sent for mice immunization. Antisera against the H5+N6 protein showed 80 to 320 neutralizing antibody titers to various H5Nx pseudoviruses. In contrast, H5N6 VLPs not only elicited higher neutralizing antibody titers, ranging from 640 to 1280, but also induced higher IL-2, IL-4, IL-5, IFN-γ and TNF production, thus indicating that H5N6 VLPs may be a potential vaccine candidate for broad-spectrum H5Nx avian influenza vaccines.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza in Birds , Animals , Antibodies, Neutralizing , Influenza A virus/genetics , Influenza Vaccines/genetics , Mammals , Mice , Vaccination
7.
Viruses ; 14(2)2022 02 10.
Article in English | MEDLINE | ID: mdl-35215957

ABSTRACT

Enterovirus genus has over one hundred genotypes and could cause several kinds of severe animal and human diseases. Understanding the role of conserved residues in the VP1 capsid protein among the enterovirus genus may lead to anti-enteroviral drug development. The highly conserved residues were found to be located at the loop and ß-barrel intersections. To elucidate the role of these VP1 residues among the enterovirus genus, alanine substitution reverse genetics (rg) variants were generated, and virus properties were investigated for their impact. Six highly conserved residues were identified as located near the inside of the canyon, and four of them were close to the ß-barrel and loop intersection. The variants rgVP1-R86A, rgVP1-P193A, rgVP1-G231A, and rgVP1-K256A were unable to be obtained, which may be due to disruption in the virus replication process. In contrast, rgVP1-E134A and rgVP1-P157A replicated well and rgVP1-P157A showed smaller plaque size, lower viral growth kinetics, and thermal instability at 39.5°C when compared to the rg wild type virus. These findings showed that the conserved residues located at the ß-barrel and loop junction play roles in modulating viral replication, which may provide a pivotal role for pan-enteroviral inhibitor candidate.


Subject(s)
Capsid Proteins/chemistry , Enterovirus/physiology , Virus Replication , Amino Acid Sequence , Antiviral Agents/chemistry , Capsid Proteins/genetics , Cell Line, Tumor , Conserved Sequence , Humans , Mutation , Protein Conformation , Protein Stability , RNA, Viral/metabolism , Small Molecule Libraries/chemistry , Temperature , Viral Load
8.
Biomed J ; 43(4): 375-387, 2020 08.
Article in English | MEDLINE | ID: mdl-32611537

ABSTRACT

BACKGROUND: Highly pathogenic emerging and re-emerging viruses continuously threaten lives worldwide. In order to provide prophylactic prevention from the emerging and re-emerging viruses, vaccine is suggested as the most efficient way to prevent individuals from the threat of viral infection. Nonetheless, the highly pathogenic viruses need to be handled in a high level of biosafety containment, which hinders vaccine development. To shorten the timeframe of vaccine development, the pseudovirus system has been widely applied to examine vaccine efficacy or immunogenicity in the emerging and re-emerging viruses. METHODS: We developed pseudovirus systems for emerging SARS coronavirus 2 (SARS-CoV-2) and re-emerging avian influenza virus H5 subtypes which can be handled in the biosafety level 2 facility. Through the generated pseudovirus of SARS-CoV-2 and avian influenza virus H5 subtypes, we successfully established a neutralization assay to quantify the neutralizing activity of antisera against the viruses. RESULTS: The result of re-emerging avian influenza virus H5Nx pseudoviruses provided valuable information for antigenic evolution and immunogenicity analysis in vaccine candidate selection. Together, our study assessed the potency of pseudovirus systems in vaccine efficacy, antigenic analysis, and immunogenicity in the vaccine development of emerging and re-emerging viruses. CONCLUSION: Instead of handling live highly pathogenic viruses in a high biosafety level facility, using pseudovirus systems would speed up the process of vaccine development to provide community protection against emerging and re-emerging viral diseases with high pathogenicity.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Influenza in Birds/drug therapy , Pneumonia, Viral/drug therapy , Viral Vaccines , Animals , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Birds , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Drug Development/methods , Humans , Influenza A virus/immunology , Influenza in Birds/prevention & control , Influenza in Birds/virology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2
9.
J Biomed Sci ; 26(1): 81, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31630680

ABSTRACT

As a neurotropic virus, enterovirus A71 (EV-A71) emerge and remerge in the Asia-Pacific region since the 1990s, and has continuously been a threat to global public health, especially in children. Annually, EV-A71 results in hand-foot-and-mouth disease (HFMD) and occasionally causes severe neurological disease. Here we reviewed the global epidemiology and genotypic evolution of EV-A71 since 1997. The natural selection, mutation and recombination events observed in the genetic evolution were described. In addition, we have updated the antigenicity and virulence determinants that are known to date. Understanding EV-A71 epidemiology, genetic evolution, antigenicity, and virulence determinants can expand our insights of EV-A71 pathogenesis, which may benefit us in the future.


Subject(s)
Enterovirus A, Human , Enterovirus Infections/epidemiology , Evolution, Molecular , Hand, Foot and Mouth Disease/epidemiology , Antigens, Viral/immunology , Enterovirus A, Human/genetics , Enterovirus A, Human/immunology , Enterovirus A, Human/pathogenicity , Enterovirus Infections/virology , Genotype , Hand, Foot and Mouth Disease/virology , Humans , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...