Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.621
Filter
1.
Front Nutr ; 11: 1378884, 2024.
Article in English | MEDLINE | ID: mdl-38725578

ABSTRACT

Myofibrillar proteins are an important component of proteins. Flavor characteristics are the key attributes of food quality. The ability of proteins to bind flavor is one of their most fundamental functional properties. The dynamic balance of release and retention of volatile flavor compounds in protein-containing systems largely affects the sensory quality and consumer acceptability of foods. At present, research on flavor mainly focuses on the formation mechanism of flavor components, while there are few reports on the release and perception of flavor components. This review introduces the composition and structure of myofibrillar proteins, the classification of flavor substances, the physical binding and chemical adsorption of myofibrillar proteins and volatile flavor substances, as well as clarifies the regulation law of flavor substances from the viewpoint of endogenous flavor characteristics and exogenous environment factors, to provide a theoretical reference for the flavor regulation of meat products.

2.
Transl Oncol ; 45: 101987, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38743986

ABSTRACT

BACKGROUND: Bevacizumab resistance poses barriers to targeted therapy in clear cell renal cell carcinoma (ccRCC). Whether there exist epigenetic targets that modulate bevacizumab sensitivity in ccRCC remains indefinite. The focus of this study is to explore the role of UCHL1 in ccRCC. METHODS: Both in vitro and in vivo experiments were utilized to investigate the roles of UCHL1 in ccRCC. In vivo ubiquitination assays were performed to validate the posttranslational modification of KDM4B by UCHL1. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were utilized to explore KDM4B/VEGFA epigenetic regulations. RESULTS: UCHL1 was increased in ccRCC and associated with unfavorable survival outcomes in patients. UCHL1 was required for ccRCC growth and migration. Mechanistically, the wild-type UCHL1, but not C90A mutant, mediated the deubiquitination of KDM4B and thereby stabilized its proteins. KDM4B was up-regulated in ccRCC and potentiated cell growth. UCHL1 depended on KDM4B to augment ccRCC malignancies. Targeting UCHL1 suppressed tumor growth, colony formation, and migration abilities, which could be rescued by KDM4B. Furthermore, KDM4B was directly bound to the promoter region of VEGFA, abolishing repressive H3K9me3 modifications. KDM4B coordinated with HIF2α to activate VEGFA transcriptional levels. UCHL1-KDM4B axis governs VEGFA levels to sustain the angiogenesis phenotypes. Finally, a specific small-molecule inhibitor (6RK73) targeting UCHL1 remarkably inhibited ccRCC progression and further sensitized ccRCC to bevacizumab treatment. CONCLUSION: Overall, this study defined an epigenetic mechanism of UCHL1/KDM4B in activating VEGF signaling. The UCHL1-KDM4B axis represents a novel target for treating ccRCC and improving the efficacy of anti-angiogenesis therapy.

3.
J Craniofac Surg ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38710064

ABSTRACT

This study aimed to comprehensively and quantitatively characterize 3-dimensional (3D) positional and morphological changes of the condyle and glenoid fossa in patients with skeletal Class II malocclusion treated with bimaxillary orthognathic surgery. Twenty eligible patients treated at our institution from January 2016 to December 2021 with more than 12 months of postoperative follow-up were retrospectively enrolled. Radiographic data of cone-beam computed tomography (CBCT) for each patient were collected at 3 stages: 1 week preoperatively (T0), immediately after surgery (T1), and at least 12 months postoperatively (T2). Positional changes, surface and volumetric alterations of condyle, and bone remodeling in glenoid fossa were measured and compared based on voxel- and surface registrations in visual 3D methods. Most patients exhibited a tendency for condyles to shift posteriorly, laterally, superiorly, and rotated outward, downward, and forward immediately after surgery. Posterior, medial, superior movement and outward, upward, and backward rotation of condyles were observed during follow-up (T1-T2). Bone resorption frequently occurred in the posterior area of condylar surfaces, while bone remodeling was more common in the anterior region of the glenoid fossa. Reduced volume of the condyle was found in most cases, which was not associated with the amount of mandibular advancement. Overall, the condyle and its corresponding glenoid fossa remained relatively stable during the follow-up. Our results reveal positional and morphological alterations in the condyle and the glenoid fossa after bimaxillary orthognathic surgery in patients with skeletal class II malocclusion. These changes predominantly fall within the spectrum of physical adaption.

4.
Article in English | MEDLINE | ID: mdl-38712685

ABSTRACT

For traditional ferroelectric field-effect transistors (FeFETs), enhancing the polarization domain of bulk ferroelectric materials is essential to improve device performance. However, there has been limited investigation into the enhancement of polarization field in two-dimensional (2D) ferroelectric material such as CuInP2S6 (CIPS). In this study, similar to bulk ferroelectric materials, CIPS exhibited enhanced polarization field upon application of external cyclic voltage. Moreover, unlike traditional ferroelectric materials, the polarization enhancement of CIPS is not due to redistribution of the defect but rather originates from a mechanism: the long-distance migration of Cu ions. We termed this mechanism the "wake-up-like effect". After incorporating the wake-up-like effect into the graphene/CIPS/WSe2 FeFET device, we successfully increased the hysteresis window and enhanced the current on/off ratio by 4 orders of magnitude. Moreover, the FeFET yielded remarkable achievements, such as multilevel nonvolatile memory with 21 distinct conductance levels, a high on/off ratio exceeding 106, a long retention time exceeding 103 s, and neuromorphic computing with 93% accuracy at recognizing handwritten digits. Introducing the wake-up-like effect to 2D CIPS may pave the way for innovative approaches to achieve advanced multilevel nonvolatile memory and neuromorphic computing capabilities for next-generation micro-nanoelectronic devices.

5.
Int J Ophthalmol ; 17(3): 528-536, 2024.
Article in English | MEDLINE | ID: mdl-38721515

ABSTRACT

AIM: To evaluate the effectiveness and safety of early lens extraction during pars plana vitrectomy (PPV) for proliferative diabetic retinopathy (PDR) compared to those of PPV with subsequent cataract surgery. METHODS: This multicenter randomized controlled trial was conducted in three Chinese hospitals on patients with PDR, aged >45y, with mild cataracts. The participants were randomly assigned to the combined (PPV combined with simultaneously cataract surgery, i.e., phacovitrectomy) or subsequent (PPV with subsequent cataract surgery 6mo later) group and followed up for 12mo. The primary outcome was the change in best-corrected visual acuity (BCVA) from baseline to 6mo, and the secondary outcomes included complication rates and medical expenses. RESULTS: In total, 129 patients with PDR were recruited and equally randomized (66 and 63 in the combined and subsequent groups respectively). The change in BCVA in the combined group [mean, 36.90 letters; 95% confidence interval (CI), 30.35-43.45] was significantly better (adjusted difference, 16.43; 95%CI, 8.77-24.08; P<0.001) than in the subsequent group (mean, 22.40 letters; 95%CI, 15.55-29.24) 6mo after the PPV, with no significant difference between the two groups at 12mo. The overall surgical risk of two sequential surgeries was significantly higher than that of the combined surgery for neovascular glaucoma (17.65% vs 3.77%, P=0.005). No significant differences were found in the photocoagulation spots, surgical time, and economic expenses between two groups. In the subsequent group, the duration of work incapacity (22.54±9.11d) was significantly longer (P<0.001) than that of the combined group (12.44±6.48d). CONCLUSION: PDR patients aged over 45y with mild cataract can also benefit from early lens extraction during PPV with gratifying effectiveness, safety and convenience, compared to sequential surgeries.

6.
Antibiotics (Basel) ; 13(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667031

ABSTRACT

Enrofloxacin is a broad-spectrum antimicrobial agent, but the study of its pharmacokinetics/pharmacodynamics (PKs/PDs) in donkeys is rarely reported. The present study aimed to investigate the pharmacokinetics of enrofloxacin administered intragastrically, and to study the pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in plasma, urine, and feces, and the PK/PD parameters were investigated to provide a rationale for enrofloxacin treatment in donkeys. A total of five healthy donkeys were selected for intragastric administration of 7.5 mg·kg-1 BW of enrofloxacin by gavage, and blood, urine, and fecal samples were collected. The results showed that the elimination half-life of plasma enrofloxacin was 11.40 ± 6.40 h, Tmax was 0.55 ± 0.12 h, Cmax was 2.46 ± 0.14 mg·L-1, AUC0-∞ was 10.30 ± 3.37 mg·L-1·h, and mean residence time (MRT) was 7.88 ± 1.26 h. The Tmax of plasma ciprofloxacin was 0.52 ± 0.08 h, Cmax was 0.14 ± 0.03 mg·L-1, and AUC0-∞ was 0.24 ± 0.16 mg·L-1·h. Urinary Cmax was 38.18 ± 8.56 mg·L-1 for enrofloxacin and 15.94 ± 4.15 mg·L-1 for ciprofloxacin. The total enrofloxacin and ciprofloxacin recovered amount in urine was 7.09 ± 2.55% of the dose for 144 h after dosing. The total enrofloxacin and ciprofloxacin recovered amount in feces was 25.73 ± 10.34% of the dose for 144 h after dosing. PK/PD parameters were also examined in this study, based on published MICs. In conclusion, 7.5 mg/kg BW of enrofloxacin administered intragastrically to donkeys was rapidly absorbed, widely distributed, and slowly eliminated in their bodies, and was predicted to be effective against bacteria with MICs < 0.25 mg·L-1.

7.
Gen Comp Endocrinol ; 353: 114513, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38604437

ABSTRACT

Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-ß superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-ß family members, such as TGF-ß1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-ß signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-ß signaling for the treatment of muscle atrophy.


Subject(s)
Cachexia , Muscular Atrophy , Myostatin , Neoplasms , Sarcopenia , Signal Transduction , Transforming Growth Factor beta , Humans , Cachexia/metabolism , Cachexia/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Sarcopenia/metabolism , Sarcopenia/pathology , Signal Transduction/physiology , Neoplasms/metabolism , Neoplasms/complications , Neoplasms/pathology , Transforming Growth Factor beta/metabolism , Myostatin/metabolism , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology
8.
Biol Pharm Bull ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38644204

ABSTRACT

The occurrence of in-stent restenosis (ISR) poses a significant challenge for percutaneous coronary intervention (PCI). Thus, the promotion of vascular reendothelialization is essential to inhibit endothelial proliferation. In this study, we clarified the mechanism by which Detoxification and Activating Blood Circulation Decoction (DABCD) promotes vascular reendothelialization to avoid ISR by miRNA-126-mediated modulation of the vascular endothelial growth factor (VEGF) signaling pathway. A rat model of post-PCI restenosis was established by balloon injury. The injured aortic segment was collected 14 and 28 d after model establishment. Our findings indicate that on the 14th and 28th days following balloon injury, DABCD reduced intimal hyperplasia and inflammation and promoted vascular reendothelialization. Additionally, DABCD markedly increased NO expression and significantly decreased ET-1 production in rat serum. DABCD also increased the mRNA level of eNOS and the protein expression of VEGF, p-Akt, and p-ERK1/2 in vascular tissue. Unexpectedly, the expression of miR-126a-5p mRNA was significantly lower in the aortic tissue of balloon-injured rats than in the aortic tissue of control rats, and higher miR-126a-5p levels were observed in the DABCD groups. The results of this study indicated that the vascular reendothelialization effect of DABCD on arterial intimal injury is associated with the inhibition of neointimal formation and the enhancement of vascular endothelial activity. More specifically, the effects of DABCD were mediated, at least in part, through miR-126-mediated VEGF signaling pathway activation.

9.
Antonie Van Leeuwenhoek ; 117(1): 68, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630330

ABSTRACT

In this research, two novel Fe(III)-reducing bacteria, SG10T and SG198T of genus Geothrix, were isolated from the rice field of Fujian Agriculture and Forestry University in Fuzhou, Fujian Province, China. Strains SG10T and SG198T were strictly anaerobic, rod-shaped and Gram-stain-negative. The two novel strains exhibited iron reduction ability, utilizing various single organic acid as the elector donor and Fe(III) as a terminal electron acceptor. Strains SG10T and SG198T showed the highest 16S rRNA sequences similarities to the type strains of Geothrix oryzisoli SG189T (99.0-99.5%) and Geothrix paludis SG195T (99.0-99.7%), respectively. The phylogenetic trees based on the 16S rRNA gene and genome 120 conserved core genes showed that strains SG10T and SG198T belong to the genus Geothrix. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the phylogenetic neighbors and the two isolated strains were 86.1-94.3% and 30.7-59.5%, respectively. The major fatty acids were iso-C15:0, anteiso-C15:0, C16:0 and iso-C13:0 3OH, and MK-8 was the main respiratory quinone. According to above results, the two strains were assigned to the genus Geothrix with the names Geothrix campi sp. nov. and Geothrix mesophila sp. nov. Type strains are SG10T (= GDMCC 1.3406 T = JCM 39331 T) and SG198T (= GDMCC 62910 T = KCTC 25635 T), respectively.


Subject(s)
Ferric Compounds , Soil , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , Acidobacteria , Bacteria , DNA
10.
Stem Cell Res Ther ; 15(1): 95, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566259

ABSTRACT

BACKGROUND: Human adipose stromal cells-derived extracellular vesicles (haMSC-EVs) have been shown to alleviate inflammation in acute lung injury (ALI) animal models. However, there are few systemic studies on clinical-grade haMSC-EVs. Our study aimed to investigate the manufacturing, quality control (QC) and preclinical safety of clinical-grade haMSC-EVs. METHODS: haMSC-EVs were isolated from the conditioned medium of human adipose MSCs incubated in 2D containers. Purification was performed by PEG precipitation and differential centrifugation. Characterizations were conducted by nanoparticle tracking analysis, transmission electron microscopy (TEM), Western blotting, nanoflow cytometry analysis, and the TNF-α inhibition ratio of macrophage [after stimulated by lipopolysaccharide (LPS)]. RNA-seq and proteomic analysis with liquid chromatography tandem mass spectrometry (LC-MS/MS) were used to inspect the lot-to-lot consistency of the EV products. Repeated toxicity was evaluated in rats after administration using trace liquid endotracheal nebulizers for 28 days, and respiratory toxicity was evaluated 24 h after the first administration. In vivo therapeutic effects were assessed in an LPS-induced ALI/ acute respiratory distress syndrome (ARDS) rat model. RESULTS: The quality criteria have been standardized. In a stability study, haMSC-EVs were found to remain stable after 6 months of storage at - 80°C, 3 months at - 20 °C, and 6 h at room temperature. The microRNA profile and proteome of haMSC-EVs demonstrated suitable lot-to-lot consistency, further suggesting the stability of the production processes. Intratracheally administered 1.5 × 108 particles/rat/day for four weeks elicited no significant toxicity in rats. In LPS-induced ALI/ARDS model rats, intratracheally administered haMSC-EVs alleviated lung injury, possibly by reducing the serum level of inflammatory factors. CONCLUSION: haMSC-EVs, as an off-shelf drug, have suitable stability and lot-to-lot consistency. Intratracheally administered haMSC-EVs demonstrated excellent safety at the tested dosages in systematic preclinical toxicity studies. Intratracheally administered haMSC-EVs improved the lung function and exerted anti-inflammatory effects on LPS-induced ALI/ARDS model rats.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Humans , Rats , Animals , Chromatography, Liquid , Proteomics , Lipopolysaccharides/pharmacology , Tandem Mass Spectrometry , Acute Lung Injury/therapy , Respiratory Distress Syndrome/therapy , Obesity , Quality Control , Extracellular Vesicles/physiology , Mesenchymal Stem Cells/physiology
11.
World J Urol ; 42(1): 208, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565733

ABSTRACT

OBJECTIVES: To determine the relationship between renal tumor complexity and vascular complications after partial nephrectomy using PADUA, RENAL, and ZS scores. METHODS: Between January 2007 and December 2018, a total of 1917 patients with available cross-sectional imaging were enrolled in the study. Logistic regressions were used to identify independent predictors of vascular complications. RESULTS: Of 1917 patients, 31 (1.6%) developed vascular complications, including 10 females and 21 males. The high-complexity category was significantly associated with a decreased risk of vascular complication in PADUA (OR = 0.256; 95%CI = 0.086-0.762; P = 0.014) and ZS score (OR = 0.279; 95%CI = 0.083-0.946; P = 0.040). Laparoscopic partial nephrectomy and robot-assisted laparoscopic partial nephrectomy were independent risk factors for vascular complications. Meanwhile, the incidence was significantly reduced in the recent 4 years in the high score tumor group alone in PADUA (0.2% [1/474] vs. 2.2% [3/139], P = 0.038) and ZS score (0.2% [1/469] vs. 2.7% [3/112], P = 0.024). In the first 8 years, laparoscopic partial nephrectomy and robot-assisted laparoscopic partial nephrectomy were the only two independent risk factors for vascular complications. In the recent 4 years, only the high-complexity category was significantly associated with a decreased risk of vascular complication in the PADUA score (OR = 0.110; 95%CI = 0.013-0.938; P = 0.044). CONCLUSION: The renal anatomic classification system cannot predict the occurrence of vascular complications after partial nephrectomy.


Subject(s)
Kidney Neoplasms , Laparoscopy , Robotic Surgical Procedures , Male , Female , Humans , Kidney/surgery , Nephrectomy/adverse effects , Nephrectomy/methods , Kidney Neoplasms/pathology , Robotic Surgical Procedures/adverse effects , Laparoscopy/adverse effects , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Postoperative Complications/pathology , Retrospective Studies , Treatment Outcome
12.
Br J Pharmacol ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38613153

ABSTRACT

BACKGROUND AND PURPOSE: Pancreatic islets are modulated by cross-talk among different cell types and paracrine signalling plays important roles in maintaining glucose homeostasis. Urocortin 3 (UCN3) secreted by pancreatic ß cells activates the CRF2 receptor (CRF2R) and downstream pathways mediated by different G protein or arrestin subtypes in δ cells to cause somatostatin (SST) secretion, and constitutes an important feedback circuit for glucose homeostasis. EXPERIMENTAL APPROACH: Here, we used Arrb1-/-, Arrb2-/-, Gsfl/fl and Gqfl/fl knockout mice, the G11-shRNA-GFPfl/fl lentivirus, as well as functional assays and pharmacological characterization to study how the coupling of Gs, G11 and ß-arrestin1 to CRF2R contributed to UCN3-induced SST secretion in pancreatic δ cells. KEY RESULTS: Our study showed that CRF2R coupled to a panel of G protein and arrestin subtypes in response to UCN3 engagement. While RyR3 phosphorylation by PKA at the S156, S2706 and S4697 sites may underlie the Gs-mediated UCN3- CRF2R axis for SST secretion, the interaction of SYT1 with ß-arrestin1 is also essential for efficient SST secretion downstream of CRF2R. The specific expression of the transcription factor Stat6 may contribute to G11 expression in pancreatic δ cells. Furthermore, we found that different UCN3 concentrations may have distinct effects on glucose homeostasis, and these effects may depend on different CRF2R downstream effectors. CONCLUSIONS AND IMPLICATIONS: Collectively, our results provide a landscape view of signalling mediated by different G protein or arrestin subtypes downstream of paracrine UCN3- CRF2R signalling in pancreatic ß-δ-cell circuits, which may facilitate the understanding of fine-tuned glucose homeostasis networks.

13.
PLoS One ; 19(4): e0301762, 2024.
Article in English | MEDLINE | ID: mdl-38598502

ABSTRACT

This paper focuses on optimizing the management of delayed trains in operational scenarios by scientifically categorizing train delay levels. It employs static and dynamic models grounded in real-world train delay data from high-speed railways. This classification aids dispatchers in swiftly identifying and predicting delay extents, thus enhancing mitigation strategies' efficiency. Key indicators, encompassing initial delay duration, station impacts, average station delay, delayed trains' cascading effects, and average delay per affected train, inform the classification. Applying the K-means clustering algorithm to standardized delay indicators yields an optimized categorization of delayed trains into four levels, reflecting varying risk levels. This static classification offers a comprehensive overview of delay dynamics. Furthermore, utilizing Markov chains, the study delves into sequential dynamic analyses, accounting for China's railway context and specifically addressing fluctuations during the Spring Festival travel rush. This research, combining static and dynamic approaches, provides valuable insights for bolstering railway operational efficiency and resilience amidst diverse delay scenarios.


Subject(s)
Railroads , Travel
14.
J Surg Oncol ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606525

ABSTRACT

BACKGROUND: Retroperitoneal partial nephrectomy (RLPN) is the premier treatment for localized renal tumors despite narrow operation space. Many efforts have been taken to facilitate the operation of RLPN, but the optimal resolution remains debatable. OBJECTIVE: To explore the feasibility of using Mini-lap to improve workspace and surgical vision in RLPN. DESIGN, SETTING, AND PARTICIPANTS: A multicenter retrospective review of 51 patients who underwent RLPN with Mini-lap from January 2018 to December 2020 was conducted. SURGICAL PROCEDURE: Standard RLPN under three poles was performed in all cases. We highlighted the usage of Mini-lap (Teleflex Minilap percutaneous Surgical System) as a novel retractor in RLPN. OUTCOME AND MEASUREMENTS AND STATICAL ANALYSIS: Demographics, preoperative, intraoperative, and postoperative outcomes were assessed. RESULTS AND LIMITATIONS: All 51 cases completed RLPN with three ports successfully and no conversion to open surgery. The mean diameter of tumors was (3.53 ± 1.05) cm, in which 62.7% (32/51) were located anteriorly. The operation time and warm ischemic time (WIT) were (86.7 ± 15.9) min and (25.6 ± 5) min respectively. Minor complications (Clavien grade 1-2) occurred in 6 cases. The limitations were small sample size, retrospective design, and absence of control. CONCLUSIONS: Mini-lap could be used as a mini-retractor in RLPN, sparing extra assistant ports, expanding workspace, and optimizing vision. PATIENT SUMMARY: With highlights of larger workspace and less instrument interference, mini-lap could be applied in retroperitoneal laparoscopic partial nephrectomy.

15.
J Mol Cell Cardiol ; 190: 62-75, 2024 May.
Article in English | MEDLINE | ID: mdl-38583797

ABSTRACT

Intimal hyperplasia is a complicated pathophysiological phenomenon attributable to in-stent restenosis, and the underlying mechanism remains unclear. Interleukin enhancer-binding factor 3 (ILF3), a double-stranded RNA-binding protein involved in regulating mRNA stability, has been recently demonstrated to assume a crucial role in cardiovascular disease; nevertheless, its impact on intimal hyperplasia remains unknown. In current study, we used samples of human restenotic arteries and rodent models of intimal hyperplasia, we found that vascular smooth muscle cell (VSMC) ILF3 expression was markedly elevated in human restenotic arteries and murine ligated carotid arteries. SMC-specific ILF3 knockout mice significantly suppressed injury induced neointimal formation. In vitro, platelet-derived growth factor type BB (PDGF-BB) treatment elevated the level of VSMC ILF3 in a dose- and time-dependent manner. ILF3 silencing markedly inhibited PDGF-BB-induced phenotype switching, proliferation, and migration in VSMCs. Transcriptome sequencing and RNA immunoprecipitation sequencing depicted that ILF3 maintained its stability upon binding to the mRNA of the high-mobility group box 1 protein (HMGB1), thereby exerting an inhibitory effect on the transcription of dual specificity phosphatase 16 (DUSP16) through enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3). Therefore, the results both in vitro and in vivo indicated that the loss of ILF3 in VSMC ameliorated neointimal hyperplasia by regulating the STAT3/DUSP16 axis through the degradation of HMGB1 mRNA. Our findings revealed that vascular injury activates VSMC ILF3, which in turn promotes intima formation. Consequently, targeting specific VSMC ILF3 may present a potential therapeutic strategy for ameliorating cardiovascular restenosis.


Subject(s)
HMGB1 Protein , Hyperplasia , Mice, Knockout , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Nuclear Factor 90 Proteins , RNA Stability , STAT3 Transcription Factor , Tunica Intima , Animals , Humans , Male , Mice , Cell Movement , Cell Proliferation , Disease Models, Animal , Gene Expression Regulation , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Neointima/pathology , Nuclear Factor 90 Proteins/metabolism , Nuclear Factor 90 Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , STAT3 Transcription Factor/metabolism , Tunica Intima/metabolism , Tunica Intima/pathology
16.
Article in English | MEDLINE | ID: mdl-38480068

ABSTRACT

OBJECTIVES: To reveal research focuses on surgery-first orthognathic surgery by a bibliometric and visualized analysis of the top 100 highly cited articles. STUDY DESIGN: Published papers related to surgery-first orthognathic surgery were retrospectively retrieved from the Web of Science Core Collection from 2009 to 2022. The number of articles, journals, countries/regions, institutions, authors, and keywords were assessed and visualized using CiteSpace software. RESULTS: The top 100 cited articles included 89 research papers and 11 reviews. The average total citation was 21. The most influential article with 146 citations was published by Dr. Liou E.J.W. in 2011. The most common level of evidence was level IV (36 articles). The Journal of Oral and Maxillofacial Surgery had the largest number of papers and the highest total citation frequency. The most productive countries and institutions were Korea/China and Chang Gung Memorial Hospital, respectively. Chen Yu-ray and Choi Jong Woo published 13 and 11 articles with 434 and 299 total citations, respectively. Research interests shifted from skeletal class III malocclusion, accuracy, stability, and relapse to quality of life and virtual surgical planning. CONCLUSION: Our bibliometric analyses provide a comprehensive landscape of the influential topics and developmental trends in surgery-first orthognathic surgery and inspire future studies in this booming field.


Subject(s)
Bibliometrics , Humans , Orthognathic Surgery , Retrospective Studies , Orthognathic Surgical Procedures/statistics & numerical data , Periodicals as Topic/statistics & numerical data
17.
Mol Plant Pathol ; 25(3): e13444, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481338

ABSTRACT

Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism of plant pathogens rapidly adapting to the dynamic host iron environments to assimilate iron for invasion and colonization remains largely unexplored. Here, we found that the GATA transcription factor SreC in Curvularia lunata is required for virulence and adaption to the host iron excess environment. SreC directly binds to the ATGWGATAW element in an iron-dependent manner to regulate the switch between different iron assimilation pathways, conferring adaption to host iron environments in different trophic stages of C. lunata. SreC also regulates the transition of trophic stages and developmental processes in C. lunata. SreC-dependent adaption to host iron environments is essential to the infectious growth and survival of C. lunata. We also demonstrate that CgSreA (a SreC orthologue) plays a similar role in Colletotrichum graminicola. We conclude that Sre mediates adaption to the host iron environment during infection, and the function is conserved in hemibiotrophic fungi.


Subject(s)
Curvularia , Fungal Proteins , Iron , Iron/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Virulence
18.
Acta Pharmacol Sin ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528118

ABSTRACT

Anxiety disorders are the most common psychiatric condition, but the etiology of anxiety disorders remains largely unclear. Our previous studies have shown that neuroplastin 65 deficiency (NP65-/-) mice exhibit abnormal social and mental behaviors and decreased expression of tryptophan hydroxylase 2 (TPH2) protein. However, whether a causal relationship between TPH2 reduction and anxiety disorders exists needs to be determined. In present study, we found that replenishment of TPH2 in dorsal raphe nucleus (DRN) enhanced 5-HT level in the hippocampus and alleviated anxiety-like behaviors. In addition, injection of AAV-NP65 in DRN significantly increased TPH2 expression in DRN and hippocampus, and reduced anxiety-like behaviors. Acute administration of exogenous 5-HT or HTR3 agonist SR57227A in hippocampus mitigated anxiety-like behaviors in NP65-/- mice. Moreover, replenishment of TPH2 in DRN partly repaired the impairment of long-term potentiation (LTP) maintenance in hippocampus of NP65-/- mice. Finally, we found that loss of NP65 lowered transcription factors Lmx1b expression in postnatal stage and replenishment of NP65 in DRN reversed the decrease in Lmx1b expression of NP65-/- mice. Together, our findings reveal that NP65 deficiency induces anxiety phenotype by downregulating DRN-hippocampus serotonergic-HTR3 transmission. These studies provide a novel and insightful view about NP65 function, suggesting an attractive potential target for treatment of anxiety disorders.

19.
Anal Chem ; 96(12): 4891-4900, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38462674

ABSTRACT

Lateral flow immunoassay (LFIA), a classical point-of-care testing (POCT) technique, plays an important role in disease screening and healthcare monitoring. However, traditional LFIA is either designed for qualitative analysis or requires expensive equipment for quantification, limiting its use in household diagnosis. In this study, we proposed a new generation of LFIA for household health monitoring by using ultralong organic phosphorescence (UOP) nanomaterials as afterglow nanoprobes with a self-developed palm-size sensing device. The UOP nanoprobes exhibit a phosphorescence signal with a second-level lifetime, which completely avoids the interference from excitation light and biological background fluorescence. Therefore, an ultraminiaturized and low-cost UOP nanosensor was successfully designed by eliminating the complex optical path and filtering systems. We chose an inflammatory factor, C-reactive protein (CRP), for household POCT validation. The whole analysis was completed within 9 min. A limit of detection (LOD) of 0.54 ng/mL of CRP antigen was achieved with high stability and good specificity, which is comparable to laboratory instruments and fully satisfying the clinical diagnosis requirement.


Subject(s)
Nanostructures , Immunoassay/methods , Limit of Detection
20.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38535487

ABSTRACT

The miniaturization, lightweight, and solidification of pulse forming lines (PFLs) are of prime significance during the evolution of pulsed power technology. In this paper, an all-solid-state annular pulse forming line (APFL) based on film-insulated coaxial transmission lines is developed to generate fast-rise time quasi-square pulses. First, a coiled coaxial transmission line (CCTL) comprised of multilayer polypropylene films with outstanding insulating properties is constructed. It can withstand direct current voltages up to 200 kV, with a cross section diameter of 7.4 mm. In addition, in order to turn the pulse transmission direction from circumferential to axial, a compact insulated terminal with a 90° bend structure is designed for CCTL. Although single terminal inductance can slow down the rising edge of the output pulse, their parallel connection in an APFL can weaken such an effect. The APFL, with a characteristic impedance of 2.95 Ω and a transmission time of 13 ns, is composed of three CCTLs with six terminals, which can run over 100 thousand times under the pulse voltage of 75 kV. Finally, 15 series APFL modules are employed to assemble a multi-stage PFL for the Tesla-type pulse generator. When charged to a voltage of 1 MV, the mixed PFL consisting of a coaxial line and the multi-stage PFL outputs quasi-square pulses with a voltage amplitude, rise time, and width of 510 kV, 4 ns, and 41.5 ns, respectively, and the fluctuation of the flat top is about 6%.

SELECTION OF CITATIONS
SEARCH DETAIL
...