Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
Am J Physiol Renal Physiol ; 325(5): F656-F668, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37706232

ABSTRACT

The circadian clock protein basic helix-loop-helix aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a transcription factor that impacts kidney function, including blood pressure (BP) control. Previously, we have shown that male, but not female, kidney-specific cadherin Cre-positive BMAL1 knockout (KS-BMAL1 KO) mice exhibit lower BP compared with littermate controls. The goal of this study was to determine the BP phenotype and immune response in male KS-BMAL1 KO mice in response to a low-K+ high-salt (LKHS) diet. BP, renal inflammatory markers, and immune cells were measured in male mice following an LKHS diet. Male KS-BMAL1 KO mice had lower BP following the LKHS diet compared with control mice, yet their circadian rhythm in pressure remained unchanged. Additionally, KS-BMAL1 KO mice exhibited lower levels of renal proinflammatory cytokines and immune cells following the LKHS diet compared with control mice. KS-BMAL1 KO mice were protected from the salt-sensitive hypertension observed in control mice and displayed an attenuated immune response following the LKHS diet. These data suggest that BMAL1 plays a role in driving the BP increase and proinflammatory environment that occurs in response to an LKHS diet.NEW & NOTEWORTHY We show here, for the first time, that kidney-specific BMAL1 knockout mice are protected from blood pressure (BP) increases and immune responses to a salt-sensitive diet. Other kidney-specific BMAL1 knockout models exhibit lower BP phenotypes under basal conditions. A salt-sensitive diet exacerbates this genotype-specific BP response, leading to fewer proinflammatory cytokines and immune cells in knockout mice. These data demonstrate the importance of distal segment BMAL1 in BP and immune responses to a salt-sensitive environment.


Subject(s)
ARNTL Transcription Factors , Hypertension , Animals , Male , Mice , ARNTL Transcription Factors/metabolism , Blood Pressure/physiology , Circadian Rhythm/physiology , Cytokines , Diet , Hypertension/genetics , Hypertension/prevention & control , Kidney/metabolism , Mice, Knockout , Sodium Chloride, Dietary
2.
Function (Oxf) ; 4(2): zqad001, 2023.
Article in English | MEDLINE | ID: mdl-36778748

ABSTRACT

Brain and muscle ARNT-like 1 (BMAL1) is a core circadian clock protein and transcription factor that regulates many physiological functions, including blood pressure (BP). Male global Bmal1 knockout (KO) mice exhibit ∼10 mmHg reduction in BP, as well as a blunting of BP rhythm. The mechanisms of how BMAL1 regulates BP remains unclear. The adrenal gland synthesizes hormones, including glucocorticoids and mineralocorticoids, that influence BP rhythm. To determine the role of adrenal BMAL1 on BP regulation, adrenal-specific Bmal1 (ASCre/+ ::Bmal1) KO mice were generated using aldosterone synthase Cre recombinase to KO Bmal1 in the adrenal gland zona glomerulosa. We confirmed the localization and efficacy of the KO of BMAL1 to the zona glomerulosa. Male ASCre/+ ::Bmal1 KO mice displayed a shortened BP and activity period/circadian cycle (typically 24 h) by ∼1 h and delayed peak of BP and activity by ∼2 and 3 h, respectively, compared with littermate Cre- control mice. This difference was only evident when KO mice were in metabolic cages, which acted as a stressor, as serum corticosterone was increased in metabolic cages compared with home cages. AS Cre/+ ::Bmal1 KO mice also displayed altered diurnal variation in serum corticosterone. Furthermore, these mice have altered eating behaviors where they have a blunted night/day ratio of food intake, but no change in overall food consumed compared with controls. Overall, these data suggest that adrenal BMAL1 has a role in the regulation of BP rhythm and eating behaviors.


Subject(s)
ARNTL Transcription Factors , Blood Pressure , Circadian Clocks , Feeding Behavior , Animals , Male , Mice , ARNTL Transcription Factors/genetics , Brain/metabolism , Circadian Clocks/genetics , Corticosterone , Mice, Knockout
3.
Cell Rep ; 42(1): 111982, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36640301

ABSTRACT

Cellular circadian clocks direct a daily transcriptional program that supports homeostasis and resilience. Emerging evidence has demonstrated age-associated changes in circadian functions. To define age-dependent changes at the systems level, we profile the circadian transcriptome in the hypothalamus, lung, heart, kidney, skeletal muscle, and adrenal gland in three age groups. We find age-dependent and tissue-specific clock output changes. Aging reduces the number of rhythmically expressed genes (REGs), indicative of weakened circadian control. REGs are enriched for the hallmarks of aging, adding another dimension to our understanding of aging. Analyzing differential gene expression within a tissue at four different times of day identifies distinct clusters of differentially expressed genes (DEGs). Increased variability of gene expression across the day is a common feature of aged tissues. This analysis extends the landscape for understanding aging and highlights the impact of aging on circadian clock function and temporal changes in gene expression.


Subject(s)
Circadian Clocks , Transcriptome , Male , Animals , Mice , Transcriptome/genetics , Circadian Rhythm/genetics , Circadian Clocks/genetics , Hypothalamus , Aging/genetics , Aging/metabolism
4.
Can J Physiol Pharmacol ; 101(3): 136-146, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36450128

ABSTRACT

Endothelin-1 (ET-1) is a peptide hormone that acts on its receptors to regulate sodium handling in the kidney's collecting duct. Dysregulation of the endothelin axis is associated with various diseases, including salt-sensitive hypertension and chronic kidney disease. Previously, our lab has shown that the circadian clock gene PER1 regulates ET-1 levels in mice. However, the regulation of ET-1 by PER1 has never been investigated in rats. Therefore, we used a novel model where knockout of Per1 was performed in Dahl salt-sensitive rat background (SS Per1 -/-) to test a hypothesis that PER1 regulates the ET-1 axis in this model. Here, we show increased renal ET-1 peptide levels and altered endothelin axis gene expression in several tissues, including the kidney, adrenal glands, and liver in SS Per1 -/- compared with control SS rats. Edn1 antisense lncRNA Edn1-AS, which has previously been suggested to be regulated by PER1, was also altered in SS Per1 -/- rats compared with control SS rats. These data further support the hypothesis that PER1 is a negative regulator of Edn1 and is important in the regulation of the endothelin axis in a tissue-specific manner.


Subject(s)
Circadian Clocks , Hypertension , Rats , Mice , Animals , Rats, Inbred Dahl , Circadian Clocks/genetics , Endothelins , Kidney/metabolism , Endothelin-1/genetics , Endothelin-1/metabolism , Transcription Factors/metabolism , Blood Pressure/physiology , Period Circadian Proteins/genetics
5.
Biomolecules ; 12(2)2022 02 05.
Article in English | MEDLINE | ID: mdl-35204763

ABSTRACT

BMAL1 is a core mammalian circadian clock transcription factor responsible for the regulation of the expression of thousands of genes. Previously, male skeletal-muscle-specific BMAL1-inducible-knockout (iMS-BMAL1 KO) mice have been described as a model that exhibits an aging-like phenotype with an altered gait, reduced mobility, muscle weakness, and impaired glucose uptake. Given this aging phenotype and that chronic kidney disease is a disease of aging, the goal of this study was to determine if iMS-BMAL1 KO mice exhibit a renal phenotype. Male iMS-BMAL1 KO and control mice were challenged with a low potassium diet for five days. Both genotypes responded appropriately by conserving urinary potassium. The iMS-BMAL1 KO mice excreted less potassium during the rest phase during the normal diet but there was no genotype difference during the active phase. Next, iMS-BMAL1 KO and control mice were used to compare markers of kidney injury and assess renal function before and after a phase advance protocol. Following phase advance, no differences were detected in renal mitochondrial function in iMS-BMAL1 KO mice compared to control mice. Additionally, the glomerular filtration rate and renal morphology were similar between groups in response to phase advance. Disruption of the clock in skeletal muscle tissue activates inflammatory pathways within the kidney of male mice, and there is evidence of this affecting other organs, such as the lungs. However, there were no signs of renal injury or altered function following clock disruption of skeletal muscle under the conditions tested.


Subject(s)
ARNTL Transcription Factors , Circadian Clocks , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Kidney/metabolism , Male , Mice , Mice, Knockout , Muscle, Skeletal/metabolism
6.
Am J Physiol Renal Physiol ; 322(4): F449-F459, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35129370

ABSTRACT

PERIOD 1 (PER1) is a circadian clock transcription factor that is regulated by aldosterone, a hormone that increases blood volume and Na+ retention to increase blood pressure. Male global Per1 knockout (KO) mice develop reduced night/day differences in Na+ excretion in response to a high-salt diet plus desoxycorticosterone pivalate treatment (HS + DOCP), a model of salt-sensitive hypertension. In addition, global Per1 KO mice exhibit higher aldosterone levels on a normal-salt diet. To determine the role of Per1 in the kidney, male kidney-specific Per1 KO (KS-Per1 KO) mice were generated using Ksp-cadherin Cre recombinase to remove exons 2-8 of Per1 in the distal nephron and collecting duct. Male KS-Per1 KO mice have increased Na+ retention but have normal diurnal differences in Na+ excretion in response to HS + DOCP. The increased Na+ retention is associated with altered expression of glucocorticoid and mineralocorticoid receptors, increased serum aldosterone, and increased medullary endothelin-1 compared with control mice. Adrenal gland gene expression analysis revealed that circadian clock and aldosterone synthesis genes have altered expression in KS-Per1 KO mice compared with control mice. These results emphasize the importance of the circadian clock not only in maintaining rhythms of physiological functions but also for adaptability in response to environmental cues, such as HS + DOCP, to maintain overall homeostasis. Given the prevalence of salt-sensitive hypertension in the general population, these findings have important implications for our understanding of how circadian clock proteins regulate homeostasis.NEW & NOTEWORTHY For the first time, we show that knockout of the circadian clock transcription factor PERIOD 1 using kidney-specific cadherin Cre results in increased renal Na+ reabsorption, increased aldosterone levels, and changes in gene expression in both the kidney and adrenal gland. Diurnal changes in renal Na+ excretion were not observed, demonstrating that the clock protein PER1 in the kidney is important for maintaining homeostasis and that this effect may be independent of time of day.


Subject(s)
Aldosterone , Circadian Clocks , Hypertension , Kidney , Period Circadian Proteins , Aldosterone/blood , Animals , Cadherins/metabolism , Circadian Clocks/genetics , Gene Expression , Kidney/metabolism , Male , Mice , Mice, Knockout , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Sodium/metabolism , Sodium Chloride, Dietary/metabolism
7.
Can J Physiol Pharmacol ; 98(9): 579-586, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32437627

ABSTRACT

Previously, we showed that global knockout (KO) of the circadian clock transcription factor PER1 in male, but not female, mice fed a high-salt diet plus mineralocorticoid treatment (HS/DOCP) resulted in nondipping hypertension and decreased night/day ratio of sodium (Na) excretion. Additionally, we have shown that the endothelin-1 (ET-1) gene is targeted by both PER1 and aldosterone. We hypothesized that ET-1 would exhibit a sex-specific response to HS/DOCP treatment in PER1 KO. Here we show that male, but not female, global PER1 KO mice exhibit a decreased night/day ratio of urinary ET-1. Gene expression analysis revealed significant genotype differences in ET-1 and endothelin A receptor (ETA) expression in male, but not female, mice in response to HS/DOCP. Additionally, both wild-type and global PER1 KO male mice significantly increase endothelin B receptor (ETB) expression in response to HS/DOCP, but female mice do not. Finally, siRNA-mediated knockdown of PER1 in mouse cortical collecting duct cells (mpkCCDc14) resulted in increased ET-1 mRNA expression and peptide secretion in response to aldosterone treatment. These data suggest that PER1 is a negative regulator of ET-1 expression in response to HS/DOCP, revealing a novel mechanism for the regulation of renal Na handling in response to HS/DOCP treatment.


Subject(s)
Endothelin-1/metabolism , Hypertension/metabolism , Kidney Tubules, Collecting/physiopathology , Period Circadian Proteins/metabolism , Renal Elimination/physiology , Aldosterone/administration & dosage , Aldosterone/adverse effects , Animals , Circadian Clocks/physiology , Disease Models, Animal , Endothelin-1/urine , Female , Humans , Hypertension/chemically induced , Hypertension/physiopathology , Kidney Tubules, Collecting/drug effects , Male , Mice , Mice, Knockout , Period Circadian Proteins/genetics , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/metabolism , Renal Elimination/drug effects , Sex Factors , Sodium Chloride, Dietary/adverse effects , Sodium Chloride, Dietary/metabolism
8.
Am J Physiol Renal Physiol ; 318(6): F1463-F1477, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32338037

ABSTRACT

The renal circadian clock has a major influence on the function of the kidney. Aryl hydrocarbon receptor nuclear translocator-like protein 1 [ARNTL; also known as brain and muscle ARNT-like 1 (BMAL1)] is a core clock protein and transcription factor that regulates the expression of nearly half of all genes. Using male and female kidney-specific cadherin BMAL1 knockout (KS-BMAL1 KO) mice, we examined the role of renal distal segment BMAL1 in blood pressure control and solute handling. We confirmed that this mouse model does not express BMAL1 in thick ascending limb, distal convoluted tubule, and collecting duct cells, which are the final locations for solute and fluid regulation. Male KS-BMAL1 KO mice displayed a substantially lower basal systolic blood pressure compared with littermate control mice, yet their circadian rhythm in pressure remained unchanged [male control mice: 127 ± 0.7 mmHg (n = 4) vs. male KS-BMAL KO mice: 119 ± 2.3 mmHg (n = 5), P < 0.05]. Female mice, however, did not display a genotype difference in basal systolic blood pressure [female control mice: 120 ± 1.6 mmHg (n = 5) vs. female KS-BMAL1 KO mice: 119 ± 1.5 mmHg (n = 7), P = 0.4]. In addition, male KS-BMAL1 KO mice had less Na+ retention compared with control mice in response to a K+-restricted diet (15% less following 5 days of treatment). However, there was no genotype difference in Na+ handling after a K+-restricted diet in female mice. Furthermore, there was evidence indicating a sex-specific response to K+ restriction where female mice reabsorbed less Na+ in response to this dietary challenge compared with male mice. We propose that BMAL1 in the distal nephron and collecting duct contributes to blood pressure regulation and Na+ handling in a sex-specific manner.


Subject(s)
ARNTL Transcription Factors/metabolism , Blood Pressure , Circadian Rhythm , Nephrons/metabolism , Renal Reabsorption , Sodium/metabolism , ARNTL Transcription Factors/deficiency , ARNTL Transcription Factors/genetics , Animals , Female , Genotype , Homeostasis , Kidney Tubules, Collecting/metabolism , Male , Mice, Knockout , Phenotype , Potassium, Dietary/metabolism , Sex Factors , Time Factors
9.
Am J Physiol Renal Physiol ; 316(5): F807-F813, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30759025

ABSTRACT

Circadian rhythms govern physiological functions and are important for overall health. The molecular circadian clock comprises several transcription factors that mediate circadian control of physiological function, in part, by regulating gene expression in a tissue-specific manner. These connections are well established, but the underlying mechanisms are incompletely understood. The overall goal of this study was to examine the connection among the circadian clock protein Period 1 (Per1), epithelial Na+ channel (ENaC), and blood pressure (BP) using a multipronged approach. Using global Per1 knockout mice on a 129/sv background in combination with a high-salt diet plus mineralocorticoid treatment, we demonstrated that loss of Per1 in this setting is associated with protection from hypertension. Next, we used the ENaC inhibitor benzamil to demonstrate a role for ENaC in BP regulation and urinary Na+ excretion in 129/sv mice. We targeted Per1 indirectly using pharmacological inhibition of Per1 nuclear entry in vivo to demonstrate altered expression of known Per1 target genes as well as a BP-lowering effect in 129/sv mice. Finally, we directly inhibited Per1 via genetic knockdown in amphibian distal nephron cells to demonstrate, for the first time, that reduced Per1 expression is associated with decreased ENaC activity at the single channel level.


Subject(s)
Blood Pressure , Circadian Rhythm , Epithelial Sodium Channels/metabolism , Hypertension/prevention & control , Nephrons/metabolism , Period Circadian Proteins/metabolism , Amiloride/analogs & derivatives , Amiloride/pharmacology , Animals , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Casein Kinases/antagonists & inhibitors , Casein Kinases/metabolism , Circadian Rhythm/drug effects , Desoxycorticosterone/analogs & derivatives , Disease Models, Animal , Epithelial Sodium Channel Blockers/pharmacology , Epithelial Sodium Channels/drug effects , Epithelial Sodium Channels/genetics , Hypertension/genetics , Hypertension/metabolism , Hypertension/physiopathology , Male , Mice, 129 Strain , Mice, Knockout , Mineralocorticoids , Natriuresis , Nephrons/drug effects , Period Circadian Proteins/antagonists & inhibitors , Period Circadian Proteins/deficiency , Period Circadian Proteins/genetics , Pyrimidines/pharmacology , Sodium Chloride, Dietary , Time Factors , Xenopus
10.
Am J Physiol Regul Integr Comp Physiol ; 316(1): R50-R58, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30427705

ABSTRACT

The circadian clock is integral to the maintenance of daily rhythms of many physiological outputs, including blood pressure. Our laboratory has previously demonstrated the importance of the clock protein period 1 (PER1) in blood pressure regulation in male mice. Briefly, a high-salt diet (HS; 4% NaCl) plus injection with the long-acting mineralocorticoid deoxycorticosterone pivalate (DOCP) resulted in nondipping hypertension [<10% difference between night and day blood pressure (BP) in Per1-knockout (KO) mice but not in wild-type (WT) mice]. To date, there have been no studies that have examined the effect of a core circadian gene KO on BP rhythms in female mice. The goal of the present study was to determine whether female Per1-KO mice develop nondipping hypertension in response to HS/DOCP treatment. For the first time, we demonstrate that loss of the circadian clock protein PER1 in female mice does not significantly change mean arterial pressure (MAP) or the BP rhythm relative to female C57BL/6 WT control mice. Both WT and Per1-KO female mice experienced a significant increase in MAP in response to HS/DOCP. Importantly, however, both genotypes maintained a >10% dip in BP on HS/DOCP. This effect is distinct from the nondipping hypertension seen in male Per1-KO mice, demonstrating that the female sex appears to be protective against PER1-mediated nondipping hypertension in response to HS/DOCP. Together, these data suggest that PER1 acts in a sex-dependent manner in the regulation of cardiovascular rhythms.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/genetics , Hypertension/genetics , Period Circadian Proteins/deficiency , Animals , Blood Pressure/physiology , Circadian Rhythm/physiology , Female , Hypertension/physiopathology , Mice, Inbred C57BL , Mineralocorticoids , Period Circadian Proteins/genetics , Sodium Chloride, Dietary/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL