Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Cancers (Basel) ; 16(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38473403

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and deadly type of brain tumor originating from glial cells. Despite decades of clinical trials and research, there has been limited success in improving survival rates. However, molecular pathology studies have provided a detailed understanding of the genetic alterations associated with the formation and progression of glioblastoma-such as Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling activation (5%), P53 mutations (25%), and adenomatous polyposis coli (APC) alterations (2%)-laying the groundwork for further investigation into the biological and biochemical basis of this malignancy. These analyses have been crucial in revealing the sequential appearance of specific genetic lesions at distinct histopathological stages during the development of GBM. To further explore the pathogenesis and progression of glioblastoma, here, we developed the glial-fibrillary-acidic-protein (GFAP)-Cre-driven mouse model and demonstrated that activated KRAS and p53 deficiencies play distinct and cooperative roles in initiating glioma tumorigenesis. Additionally, the combination of APC haploinsufficiency with mutant Kras activation and p53 deletion resulted in the rapid progression of GBM, characterized by perivascular inflammation, large necrotic areas, and multinucleated giant cells. Consequently, our GBM models have proven to be invaluable resources for identifying early disease biomarkers in glioblastoma, as they closely mimic the human disease. The insights gained from these models may pave the way for potential advancements in the diagnosis and treatment of this challenging brain tumor.

2.
Int J Oncol ; 64(2)2024 02.
Article in English | MEDLINE | ID: mdl-38063232

ABSTRACT

RAD51 recombinase is one of the DNA damage repair proteins associated with breast cancer risk. Apart from its function to maintain genomic integrity within the cell nucleus, RAD51 localized to the cytoplasm has also been implicated in breast malignancy. However, limited information exists on the roles of cytoplasmic vs. nuclear RAD51 in breast cancer progression and patient prognosis. In the present study, the association of cytoplasmic and nuclear RAD51 with clinical outcomes of patients with breast cancer was analyzed, revealing that elevated cytoplasmic RAD51 expression was associated with breast cancer progression, including increased cancer stage, grade, tumor size, lymph node metastasis and chemoresistance, along with reduced patient survival. By contrast, elevated nuclear RAD51 expression largely had the inverse effect. Results from in vitro investigations supported the cancer­promoting effect of RAD51, showing that overexpression of RAD51 promoted breast cancer cell growth, chemoresistance and metastatic ability, while knockdown of RAD51 repressed these malignant behaviors. The current data suggest that differential expression of subcellular RAD51 had a distinct impact on breast cancer progression and patient survival. Specifically, cytoplasmic RAD51 in contrast to nuclear RAD51 was potentially an adverse marker in breast cancer.


Subject(s)
Breast Neoplasms , Rad51 Recombinase , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cytoplasm/metabolism , Neoplasm Staging , Prognosis , Rad51 Recombinase/genetics
3.
Cancers (Basel) ; 15(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38136437

ABSTRACT

The LKB1 and PTEN genes are critical in gastric cancer (G.C.) development. LKB1, a robust tumor suppressor gene, encodes a serine/threonine kinase that directly triggers the activation of AMPK-an integral cellular metabolic kinase. The role of the LKB1 pathway extends to maintaining the stability of epithelial junctions by regulating E-cadherin expression. Conversely, PTEN, a frequently mutated tumor suppressor gene in various human cancers, emerges as a pivotal negative regulator of the phosphoinositide 3-kinase (PI3K) signaling pathway. This study is set to leverage the H+/K+ ATPase Cre transgene strain to precisely target Cre recombinase expression at parietal cells within the stomach. This strategic maneuver seeks to selectively nullify the functions of both LKB1 and PTEN in a manner specific to the stomach, thereby instigating the development of G.C. in a fashion akin to human gastric adenocarcinoma. Moreover, this study endeavors to dissect the intricate ways in which these alterations contribute to the histopathologic advancement of gastric tumors, their potential for invasiveness and metastasis, their angiogenesis, and the evolving tumor stromal microenvironment. Our results show that conditional deletion of PTEN and LKB1 provides an ideal cancer microenvironment for G.C. tumorigenesis by promoting cancer cell proliferation, angiogenesis, and metastasis.

4.
Inflamm Regen ; 43(1): 42, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596694

ABSTRACT

BACKGROUND: Crosstalk between the aryl hydrocarbon receptor (AhR) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling is called the "AhR-Nrf2 gene battery", which works synergistically in detoxification to support cell survival. Nrf2-dependent phase II gene promoters are controlled by coordinated recruitment of the AhR to adjacent dioxin responsive element (DRE) and Nrf2 recruitment to the antioxidative response element (ARE). The molecular interaction between AhR and Nrf2 members, and the regulation of each target, including phase I and II gene complexes, and their mediators are poorly understood. METHODS: Knockdown and forced expression of AhR-Nrf2 battery members were used to examine the molecular interactions between the AhR-Nrf2 axis and AhR promoter activation. Sequential immunoprecipitation, chromatin immunoprecipitation, and histology were used to identify each protein complex recruited to their respective cis-elements in the AhR promoter. Actin fiber distribution, cell spreading, and invasion were examined to identify functional differences in the AhR-Jdp2 axis between wild-type and Jdp2 knockout cells. The possible tumorigenic role of Jdp2 in the AhR-Nrf2 axis was examined in mutant Kras-Trp53-driven pancreatic tumors. RESULTS: Crosstalk between AhR and Nrf2 was evident at the transcriptional level. The AhR promoter was activated by phase I ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the AhR-Jdp2-Nrf2 axis in a time- and spatial transcription-dependent manner. Jdp2 was a bifunctional activator of DRE- and ARE-mediated transcription in response to TCDD. After TCDD exposure, Jdp2 activated the AhR promoter at the DRE and then moved to the ARE where it activated the promoter to increase reactive oxygen species (ROS)-mediated functions such as cell spreading and invasion in normal cells, and cancer regression in mutant Kras-Trp53-driven pancreatic tumor cells. CONCLUSIONS: Jdp2 plays a critical role in AhR promoter activation through the AhR-Jdp2-Nrf2 axis in a spatiotemporal manner. The AhR functions to maintain ROS balance and cell spreading, invasion, and cancer regression in a mouse model of mutant Kras-Trp53 pancreatic cancer. These findings provide new insights into the roles of Jdp2 in the homeostatic regulation of oxidative stress and in the antioxidation response in detoxification, inflammation, and cancer progression.

5.
Oral Dis ; 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37448179

ABSTRACT

OBJECTIVES: Previously, we demonstrated that IL17RB plays an essential role in lung cancer progression. This study aimed to determine whether IL17RB correlates with oral cancer and promotes oral cancer progression. SUBJECTS AND METHODS: IL17RB expression in oral cancer tissues and normal tissues was determined by immunohistochemistry staining, while the association of IL17RB expression with the clinicopathological characteristics of oral squamous cell carcinoma (OSCC) patients was analyzed and its correlation with progression-free survival and response to radiotherapy and chemotherapy in OSCC patients was also explored. Western blotting was performed to investigate the expression of IL17RB in various OSCC cell lines; moreover, transwell assay was performed to evaluate the effect of IL17RB expression on cell migration ability. RESULTS: In this study, we found that IL17RB was expressed higher in OSCC tissues compared to normal oral mucosa tissues and its expression was positively correlated with tumor size, lymph node metastasis, advanced cancer stage, and poor prognosis. In vitro study showed that IL17RB expression in OSCC cell lines as determined by Western blotting, was positively correlated with their migration ability. CONCLUSION: Clinical and in vitro studies suggest that IL17RB might serve as an independent risk factor and a therapeutic target for oral cancer.

6.
Biomed Pharmacother ; 161: 114500, 2023 May.
Article in English | MEDLINE | ID: mdl-36958195

ABSTRACT

Endometriosis is a common disease in women and may be one of the factors that induces malignant epithelial ovarian tumors. Previous studies suggested that endometriosis is related to ARID1A mutation mediating the expression of HDAC6, but the detailed pathogenic mechanism is still unclear. First, we collected endometriosis-associated ovarian carcinoma (EAOC) clinical samples and examined the expression of HDAC6. Our results found that the high HDAC6 expression group was positively correlated with EAOC histology (P = 0.015), stage (P < 0.000), and tumor size (P < 0.000) and inversely correlated with survival (P < 0.000). We also found that ARID1A6488delG/HDAC6 induced M2 polarization of macrophages through IL-10. In addition, the HDAC inhibitor (HDACi) vorinostat inhibited cell growth and blocked the effect of HDAC6. Tomographic microscopy was used to monitor the live cell morphology of these treated cells, and we found that vorinostat treatment resulted in substantial cell apoptosis by 3 h 42 min. Next, we established a transgenic mouse model of EAOC and found that vorinostat significantly reduced the size of ovarian tumors by inhibiting M2 macrophage polarization in mice. Together, these data demonstrate that the signaling pathway of E4F1/ARID1A6488delG/HDAC6/GATA3 mediates macrophage polarization and provides a novel immune cell-associated therapeutic strategy targeting IL-10 in EAOC.


Subject(s)
Carcinoma , Endometriosis , Ovarian Neoplasms , Humans , Female , Animals , Mice , Vorinostat/pharmacology , Endometriosis/pathology , Interleukin-10 , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial/drug therapy , Signal Transduction , Macrophages/pathology , DNA-Binding Proteins , Transcription Factors , Histone Deacetylase 6 , Repressor Proteins
7.
iScience ; 26(1): 105881, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36654862

ABSTRACT

ARID1A is a tumor suppressor gene mutated in 7-10% of pancreatic cancer patients. However, its function in pancreas development and endocrine regulation is unclear. We generated mice that lack Arid1a expression in the pancreas. Our results showed that deletion of the Arid1a gene in mice caused a reduction in islet numbers and insulin production, both of which are associated with diabetes mellitus (DM) phenotype. RNA sequencing of isolated islets confirmed DM gene signature and decrease of developmental lineage genes. We identified neurogenin3, a transcription factor that controls endocrine fate specification, is a direct target of Aird1a. Gene set enrichment analysis indicated the enhancement of histone deacetylase (HDAC) pathway after Arid1a depletion and a clinically approved HDAC inhibitor showed therapeutic benefit by suppressing disease onset. Our data suggest that Arid1a is required for the development of pancreatic islets by regulating Ngn3+-mediated transcriptional program and is important in maintaining endocrine function.

8.
Oncol Lett ; 25(1): 42, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36589668

ABSTRACT

Lung cancer is one of the leading causes of cancer mortality worldwide. As it is often first diagnosed only when cancer metastasis has already occurred, the development of effective biomarkers for the risk prediction of cancer metastasis, followed by stringent monitoring and the early treatment of high-risk patients, is essential for improving patient survival. Cancer cells exhibit alterations in metabolic pathways that enable them to maintain rapid growth and proliferation, which are quite different from the metabolic pathways of normal cells. Fumarate hydratase (FH, fumarase) is a well-known tricarboxylic acid cycle enzyme that catalyzes the reversible hydration/dehydration of fumarate to malate. The current study sought to investigate the relationship between FH expression levels and the outcome of patients with lung cancer. FH was knocked down in lung cancer cells using shRNA or overexpressed using a vector, and the effect on migration ability was assessed. Furthermore, the role of AMP-activated protein kinase (AMPK) phosphorylation and disabled homolog 2 in the underlying mechanism was investigated using an AMPK inhibitor approach. The results showed that in lung cancer tissues, low FH expression was associated with lymph node metastasis, tumor histology and recurrence. In addition, patients with low FH expression exhibited a poor overall survival in comparison with patients having high FH expression. When FH was overexpressed in lung cancer cells, cell migration was reduced with no effect on cell proliferation. Furthermore, the level of phosphorylated (p-)AMPK, an energy sensor molecule, was upregulated when FH was knocked down in lung cancer cells, and the inhibition of p-AMPK led to an increase in the expression of disabled homolog 2, a tumor suppressor protein. These findings suggest that FH may serve as an effective biomarker for predicting the prognosis of lung cancer and as a therapeutic mediator.

9.
Sensors (Basel) ; 22(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36366107

ABSTRACT

Doppler-radar-based continuous human motion recognition recently has attracted extensive attention, which is a favorable choice for privacy and personal security. Existing results of continuous human motion recognition (CHMR) using mmWave FMCW Radar are not considered the continuous human motion with the high similarity problem. In this paper, we proposed a new CHMR algorithm with the consideration of the high similarity (HS) problem, called as CHMR-HS, by using the modified Transformer-based learning model. As far as we know, this is the first result in the literature to investigate the continuous HMR with the high similarity. To obtain the clear FMCW radar images, the background and target signals of the detected human are separated through the background denoising and the target extraction algorithms. To investigate the effects of the spectral-temporal multi-features with different dimensions, Doppler, range, and angle signatures are extracted as the 2D features and range-Doppler-time and range-angle-time signatures are extracted as the 3D features. The 2D/3D features are trained into the adjusted Transformer-encoder model to distinguish the difference of the high-similarity human motions. The conventional Transformer-decoder model is also re-designed to be Transformer-sequential-decoder model such that Transformer-sequential-decoder model can successfully recognize the continuous human motions with the high similarity. The experimental results show that the accuracy of our proposed CHMR-HS scheme are 95.2% and 94.5% if using 3D and 2D features, the simulation results also illustrates that our CHMR-HS scheme has advantages over existing CHMR schemes.


Subject(s)
Radar , Signal Processing, Computer-Assisted , Humans , Motion , Algorithms , Ultrasonography, Doppler
10.
Sensors (Basel) ; 22(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36015736

ABSTRACT

In this paper, we present a new AI (Artificial Intelligence) edge platform, called "MiniDeep", which provides a standalone deep learning platform based on the cloud-edge architecture. This AI-Edge platform provides developers with a whole deep learning development environment to set up their deep learning life cycle processes, such as model training, model evaluation, model deployment, model inference, ground truth collecting, data pre-processing, and training data management. To the best of our knowledge, such a whole deep learning development environment has not been built before. MiniDeep uses Amazon Web Services (AWS) as the backend platform of a deep learning tuning management model. In the edge device, the OpenVino enables deep learning inference acceleration at the edge. To perform a deep learning life cycle job, MiniDeep proposes a mini deep life cycle (MDLC) system which is composed of several microservices from the cloud to the edge. MiniDeep provides Train Job Creator (TJC) for training dataset management and the models' training schedule and Model Packager (MP) for model package management. All of them are based on several AWS cloud services. On the edge device, MiniDeep provides Inference Handler (IH) to handle deep learning inference by hosting RESTful API (Application Programming Interface) requests/responses from the end device. Data Provider (DP) is responsible for ground truth collection and dataset synchronization for the cloud. With the deep learning ability, this paper uses the MiniDeep platform to implement a recommendation system for AI-QSR (Quick Service Restaurant) KIOSK (interactive kiosk) application. AI-QSR uses the MiniDeep platform to train an LSTM (Long Short-Term Memory)-based recommendation system. The LSTM-based recommendation system converts KIOSK UI (User Interface) flow to the flow sequence and performs sequential recommendations with food suggestions. At the end of this paper, the efficiency of the proposed MiniDeep is verified through real experiments. The experiment results have demonstrated that the proposed LSTM-based scheme performs better than the rule-based scheme in terms of purchase hit accuracy, categorical cross-entropy, precision, recall, and F1 score.


Subject(s)
Artificial Intelligence , Deep Learning , Software
11.
Cancers (Basel) ; 13(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34439211

ABSTRACT

Lung cancer is a malignancy with high mortality worldwide, and metastasis occurs at a high frequency even when cancer spread is not detectable at primary operation. Cancer stemness plays an important role in malignant cancer behavior, treatment resistance, and cancer metastasis. Therefore, understanding the molecular pathogenesis behind cancer-stemness-mediated metastasis and developing effective approaches to prevent metastasis are key issues for improving cancer treatment. In this study, we investigated the role of CD44 stemness marker in lung cancer using in vitro and clinical studies. Immunohistochemical staining of lung cancer tissue specimens revealed that primary tumors with higher CD44 expression showed increased metastasis to regional lymph nodes. Flow cytometry analysis suggested that CD44 positive cells were enriched in the metastatic lymph nodes compared to the primary tumors. CD44 overexpression significantly increased migration and invasion abilities of lung cancer cells through CD44-induced ERK phosphorylation, ZEB1 upregulation, and Claudin-1 downregulation. Furthermore, ERK inhibition suppressed the migration and invasion abilities of CD44-overexpressing lung cancer cells. In summary, our in vitro and clinical results indicate that CD44 may be a potential prognostic and therapeutic marker for lung cancer patients.

12.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33924999

ABSTRACT

Pancreatic cancer (PC) is the seventh leading cause of cancer death worldwide, and remains one of our most recalcitrant and dismal diseases. In contrast to many other malignancies, there has not been a significant improvement in patient survival over the past decade. Despite advances in our understanding of the genetic alterations associated with this disease, an incomplete understanding of the underlying biology and lack of suitable animal models have hampered efforts to develop more effective therapies. LKB1 is a tumor suppressor that functions as a primary upstream kinase of adenine monophosphate-activated protein kinase (AMPK), which is an important mediator in the regulation of cell growth and epithelial polarity pathways. LKB1 is mutated in a significant number of Peutz-Jeghers syndrome (PJS) patients and in a small proportion of sporadic cancers, including PC; however, little is known about how LKB1 loss contributes to PC development. Here, we report that a reduction in Wnt/ß-catenin activity is associated with LKB1 tumor-suppressive properties in PC. Remarkably, in vivo functional analyses of ß-catenin in the Pdx-1-Cre LKB1L/L ß-cateninL/L mouse model compared to LKB1 loss-driven cystadenoma demonstrate that the loss of ß-catenin impairs cystadenoma development in the pancreas of Pdx-1Cre LKB1L/L mice and dramatically restores the normal development and functions of the pancreas. This study further determined the in vivo and in vitro therapeutic efficacy of the ß-catenin inhibitor FH535 in suppressing LKB1 loss-driven cystadenoma and reducing PC progression that delineates the potential roles of Wnt/ß-catenin signaling in PC harboring LKB1 deficiency.


Subject(s)
Cystadenoma, Mucinous/metabolism , Pancreatic Neoplasms/metabolism , Protein Serine-Threonine Kinases/deficiency , Sulfonamides/pharmacology , beta Catenin/antagonists & inhibitors , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/metabolism , Animals , Cell Line, Tumor , Cystadenoma, Mucinous/etiology , Cystadenoma, Mucinous/prevention & control , Female , Humans , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mutation , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Pancreatic Neoplasms/etiology , Pancreatic Neoplasms/prevention & control , Peutz-Jeghers Syndrome/genetics , Peutz-Jeghers Syndrome/metabolism , Protein Serine-Threonine Kinases/genetics , Wnt Signaling Pathway/drug effects , beta Catenin/genetics
13.
Sci Rep ; 10(1): 17447, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060649

ABSTRACT

Mutant RAS genes play an important role in regulating tumors through lysine residue 104 to impair GEF-induced nucleotide exchange, but the regulatory role of KRAS K104 modification on the KRASG12D mutant remains unclear. Therefore, we simulated the acetylation site on the KRASG12D three-dimensional protein structure, including KRASG12D, KRASG12D/K104A and KRASG12D/K104Q, and determined their trajectories and binding free energy with GEF. KRASG12D/K104Q induced structural changes in the α2- and α3-helices, promoted KRAS instability and hampered GEF binding (ΔΔG = 6.14 kJ/mol). We found decreased binding to the Raf1 RBD by KRASG12D/K104Q and reduced cell growth, invasion and migration. Based on whole-genome cDNA microarray analysis, KRASG12D/K104Q decreased expression of NPIPA2, DUSP1 and IL6 in lung and ovarian cancer cells. This study reports computational and experimental analyses of Lys104 of KRASG12D and GEF, and the findings provide a target for exploration for future treatment.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Transcription Factors/metabolism , Binding Sites , Cell Movement , Cell Proliferation , Female , Gene Expression Profiling , Humans , Lung Neoplasms/metabolism , Molecular Dynamics Simulation , Oligonucleotide Array Sequence Analysis , Oligonucleotides/genetics , Ovarian Neoplasms/metabolism , Protein Domains , Proto-Oncogene Proteins p21(ras)/metabolism , Thermodynamics , Wound Healing
14.
Int J Mol Sci ; 21(12)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32586050

ABSTRACT

Pancreatic cancer (PC) is a highly lethal malignancy due to the cancer routinely being diagnosed late and having a limited response to chemotherapy. Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic malignant tumor, representing more than 85% of all pancreatic cancers. In the present study, we characterized the phenotypes of concomitant P53 and APC mutations in pancreatic neoplasms driven by the oncogene KRAS in genetically modified mice (GEMM). In this GEMM setting, APC haploinsufficiency coupled with P53 deletion and KRASG12D activation resulted in an earlier appearance of pancreatic intraepithelial neoplasia (PanIN) lesions and progressed rapidly to highly invasive and metastatic PDAC. Through a microarray analysis of murine PDAC cells derived from our APC-deficient PDAC model, we observed that APC loss leads to upregulated CD34 expression in PDAC. CD34 is a member of a family of single-pass transmembrane proteins and is selectively expressed in hematopoietic progenitor cells, vascular endothelial cells, interstitial precursor cells, and various interstitial tumor cells. However, the functional roles of CD34 in pancreatic cancer remain unclear. Thus, in this study, we explored the mechanisms regarding how CD34 promotes the deterioration of pancreatic malignancy. Our results demonstrated that the increased expression of CD34 induced by APC inactivation promotes the invasion and migration of PDAC cells, which may relate to PDAC metastasis in vivo. Collectively, our study provides first-line evidence to delineate the association between CD34 and the APC/Wnt pathway in PDAC, and reveals the potential roles of CD34 in PDAC progression.


Subject(s)
Adenomatous Polyposis Coli Protein/physiology , Antigens, CD34/metabolism , Carcinoma, Pancreatic Ductal/secondary , Epithelial-Mesenchymal Transition , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/pathology , Animals , Antigens, CD34/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Disease Models, Animal , Disease Progression , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Mutation , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Phenotype , Signal Transduction
15.
J Clin Med ; 8(9)2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31480737

ABSTRACT

Pancreatic cancer is often treatment-resistant, with the emerging standard of care, gemcitabine, affording only a few months of incrementally-deteriorating survival. Reflecting on the history of failed clinical trials, genetically engineered mouse models (GEMMs) in oncology research provides the inspiration to discover new treatments for pancreatic cancer that come from better knowledge of pathogenesis mechanisms, not only of the derangements in and consequently acquired capabilities of the cancer cells, but also in the aberrant microenvironment that becomes established to support, sustain, and enhance neoplastic progression. On the other hand, the existing mutational profile of pancreatic cancer guides our understanding of the disease, but leaves many important questions of pancreatic cancer biology unanswered. Over the past decade, a series of transgenic and gene knockout mouse modes have been produced that develop pancreatic cancers with features reflective of metastatic pancreatic ductal adenocarcinoma (PDAC) in humans. Animal models of PDAC are likely to be essential to understanding the genetics and biology of the disease and may provide the foundation for advances in early diagnosis and treatment.

16.
Oxid Med Cell Longev ; 2019: 8259645, 2019.
Article in English | MEDLINE | ID: mdl-31354913

ABSTRACT

BACKGROUND: Diabetic nephropathy is the most common cause of end-stage renal disease. Traditional therapy for diabetic nephropathy has focused on supportive treatment, and there is no significant effective therapy. We investigated the effect of low-energy extracorporeal shock wave therapy on a diabetic nephropathy rat model. METHODS: Streptozotocin-induced diabetic nephropathy rats were treated with six sessions of low-energy extracorporeal shock wave therapy (weekly for six consecutive weeks) or left untreated. We assessed urinary creatinine and albumin, glomerular volume, renal fibrosis, podocyte number, renal inflammation, oxidative stress, and tissue repair markers (SDF-1 and VEGF) six weeks after the completion of treatment. RESULTS: The six-week low-energy extracorporeal shock wave therapy regimen decreased urinary albumin excretion as well as reduced glomerular hypertrophy and renal fibrosis in the rat model of diabetic nephropathy. Moreover, low-energy extracorporeal shock wave therapy increased podocyte number in diabetic nephropathy rats. This was likely primarily attributed to the fact that low-energy extracorporeal shock wave therapy reduced renal inflammation and oxidative stress as well as increased tissue repair potency and cell proliferation. CONCLUSIONS: Low-energy extracorporeal shock wave therapy preserved kidney function in diabetic nephropathy. Low-energy extracorporeal shock wave therapy may serve as a novel noninvasive and effective treatment of diabetic nephropathy.


Subject(s)
Diabetic Nephropathies/therapy , Extracorporeal Shockwave Therapy/methods , Kidney/pathology , Animals , Diabetic Nephropathies/pathology , Disease Models, Animal , Male , Rats , Rats, Wistar
17.
Mol Cancer ; 18(1): 96, 2019 05 20.
Article in English | MEDLINE | ID: mdl-31109321

ABSTRACT

BACKGROUND: The TG-interacting factor 1 (TGIF1) gene, which encodes a nuclear transcriptional corepressor of the TGFß1/Smad signaling pathway, has been implicated in the pathogenesis of various types of human cancer; however, its role in pancreatic ductal adenocarcinoma (PDAC) has yet to be elucidated. METHODS: The expression of TGIF1 in human and murine PDAC specimens were detected by IHC analysis. The functions of TGIF1 in in vivo PDAC growth, dissemination, and metastasis were assessed using conditional inactivation of TGIF1 in well-established autochthonous mouse models of PDAC. Primary cells from TGIF1 null or wild type PDAC mice were examined by assays for cell proliferation, migration, invasion, soft agar and xenograft tumorigenesis. Gene expression profiling, pathway analyses, epigenetic changes associated with TGIF1 loss, and in vitro and in vivo effects of 4-MU were assessed. RESULTS: Conditional deletion of TGIF1 in the mouse pancreas had no discernible effect on pancreatic development or physiology. Notably, TGIF1 loss induced KrasG12D-driven PDAC models exhibited shorter latency and greater propensity for distant metastases. Deciphering the molecular mechanisms highlighted the TGIF1 loss-induced activation of the hyaluronan synthase 2 (HAS2)-CD44 signaling pathway and upregulation of the immune checkpoint regulator PD-L1 to facilitate the epithelial-mesenchymal transition (EMT) and tumor immune suppression. We also founded that TGIF1 might function as an epigenetic regulator and response for aberrant EMT gene expression during PDAC progression. CONCLUSIONS: Our results imply that targeting the HAS2 pathway in TGIF1 loss of PDAC could be a promising therapeutic strategy for improving the clinical efficacy against PDAC metastasis.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Gene Expression Profiling/methods , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mutation , Neoplasm Metastasis , Neoplasm Transplantation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism
18.
Cancers (Basel) ; 11(5)2019 May 27.
Article in English | MEDLINE | ID: mdl-31137902

ABSTRACT

The Hox gene family plays an important role in organogenesis and animal development. Currently, 39 Hox genes that are clustered in four chromosome regions have been identified in humans. Emerging evidence suggests that Hox genes are involved in the development of the pancreas. However, the expression of Hox genes in pancreatic tumor tissues has been investigated in only a few studies. In addition, whether specific Hox genes can promote or suppress cancer metastasis is not clear. In this article, we first review the recent progress in studies on the role of Hox genes in pancreatic cancer. By comparing the expression profiles of pancreatic cancer cells isolated from genetically engineered mice established in our laboratory with three different proliferative and metastatic abilities, we identified novel Hox genes that exhibited tumor-promoting activity in pancreatic cancer. Finally, a potential oncogenic mechanism of the Hox genes was hypothesized.

19.
Theranostics ; 9(2): 324-336, 2019.
Article in English | MEDLINE | ID: mdl-30809277

ABSTRACT

K-ras mutation and p53 loss are the most prevalent genetic alterations in pancreatic cancer. In addition to these two alterations, pancreatic tumors frequently contain a third genetic defect. Mutations in the WNT/ß-catenin signaling molecules occur in 15-20% of pancreatic cancer patients and co-exist with K-ras mutation and p53 loss. However, the contribution of the WNT/ß-catenin pathway in pancreatic tumorigenesis is still unclear. Methods: We generated Pdx1-CreKrasG12Dp53L/+APCL/+ (KPA) mice and compared their phenotypes with Pdx1-CreKrasG12Dp53L/+ (KPC) mice. The signaling pathways specifically activated in the KPA mice were investigated and the therapeutic effect by targeting the activated pathways was evaluated. We finally validated our findings in human blood and tumor samples. Results: Survival of the KPA mice was shorter than that of the KPC mice. The KPA cancer cells are highly invasive and exhibit distorted morphology in organoid culture with extensive invadopodia formation and elevated matrix metalloproteinase (MMP) activity. The platelet-derived growth factor (PDGF) pathway is upregulated in the KPA cancer cells, and PDGF production induced by ß-catenin triggers constitutive activation of the Src kinase via the PDGF receptor in the cells. Serum PDGF concentration of the KPA mice is much higher than that of the normal and KPC mice. The Src inhibitor dasatinib effectively inhibits tumor growth and metastasis of the KPA cancer cells. Patient's serum PDGF level is significantly correlated with the expression of PDGF and phosphor-Src in tumors and elevated PDGF/phosphor-Src level in tumors predicts increased recurrence and poor survival. Moreover, mutations of the WNT/ß-catenin signaling molecules are higher in patients with elevated PDGF/phosphor-Src level. Conclusion: ß-catenin activation, coupled with K-ras mutation and p53 loss, activates an autocrine PDGF/Src signaling in pancreatic cancer and defines a subset of patients who might be sensitive to Src inhibition. In addition, serum PDGF level could be a reliable biomarker for patient selection in clinic.


Subject(s)
Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/physiopathology , Platelet-Derived Growth Factor/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction , beta Catenin/metabolism , src-Family Kinases/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Mice , Models, Theoretical , Survival Analysis
20.
Oral Dis ; 25(3): 758-771, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30620118

ABSTRACT

BACKGROUND: Oral cancer is a common cancer with a high mortality rate. While surgery is the most effective treatment for oral cancer, it frequently causes deformity and dysfunction in the orofacial region. In this study, methyl aminolevulinate photodynamic therapy (MAL-PDT) as a prevention tool against progression of precancerous lesion to oral cancer was explored. METHODS: For in vitro studies, we evaluated the effects of MAL-PDT on viability of DOK oral precancerous cells by XTT, cell morphology by TEM, and intracellular signaling pathways by flow cytometry, Western blotting, and immunofluorescence. For in vivo study, DMBA was used to induce oral precancerous lesions in hamsters followed by MAL-PDT treatment. We measured tumor size and body weight weekly. After sacrifice, buccal pouch lesions were processed for H&E stain and immunohistochemistry analysis. RESULTS: MAL-PDT induced autophagic cell death in DOK oral precancerous cells. The autophagy-related markers LC3II and p62/SQSTM1 and autophagosome formation in DOK cells were increased after MAL-PDT treatment. In vivo, Metvix® -PDT treatment decreased tumor growth and enhanced LC3II expression in hamster buccal pouch tumors induced by DMBA. CONCLUSIONS: Our in vitro and in vivo results suggest that MAL-PDT may provide an effective therapy for oral precancerous lesions through induction of autophagic cell death.


Subject(s)
Autophagy/drug effects , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Photochemotherapy , Precancerous Conditions/drug therapy , Precancerous Conditions/pathology , 9,10-Dimethyl-1,2-benzanthracene , Aminolevulinic Acid/analogs & derivatives , Aminolevulinic Acid/therapeutic use , Animals , Autophagosomes , Body Weight , Cell Line, Tumor , Cell Survival/drug effects , Cricetinae , Humans , Male , Microtubule-Associated Proteins/metabolism , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Precancerous Conditions/chemically induced , Sequestosome-1 Protein/metabolism , Signal Transduction , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...