Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 518
Filter
1.
Biomaterials ; 309: 122600, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38718614

ABSTRACT

Engineering vascularized tissues remains a promising approach for treating ischemic cardiovascular diseases. The availability of 3D-bioprinted vascular grafts that induce therapeutic angiogenesis can help avoid necrosis and excision of ischemic tissues. Here, using a combination of living cells and biodegradable hydrogels, we fabricated 3D-printed biocompatible proangiogenic patches from endothelial cell-laden photo-crosslinked gelatin (EC-PCG) bioink and smooth muscle cell-encapsulated polyurethane (SMC-PU) bioink. Implantation of 3D-bioprinted proangiogenic patches in a mouse model showed that EC-PCG served as an angiogenic capillary bed, whereas patterned SMC-PU increased the density of microvessels. Moreover, the assembled patterns between EC-PCG and SMC-PU induced the geometrically guided generation of microvessels with blood perfusion. In a rodent model of hindlimb ischemia, the vascular patches rescued blood flow to distal tissues, prevented toe/foot necrosis, promoted muscle remodeling, and increased the capillary density, thereby improving the heat-escape behavior of ischemic animals. Thus, our 3D-printed vascular cell-laden bioinks constitute efficient and scalable biomaterials that facilitate the engineering of vascular patches capable of directing therapeutic angiogenesis for treating ischemic vascular diseases.

2.
Clin Chim Acta ; 560: 119718, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718852

ABSTRACT

Bladder cancer (BC) is ranked as the ninth most common malignancy worldwide, with approximately 570,000 new cases reported annually and over 200,000 deaths. Cystoscopy remains the gold standard for the diagnosis of BC, however, its invasiveness, cost, and discomfort have driven the demand for the development of non-invasive, cost-effective alternatives. Nuclear matrix protein 22 (NMP22) is a promising non-invasive diagnostic tool, having received FDA approval. Traditional methods for detecting NMP22 require a laboratory environment equipped with specialized equipment and trained personnel, thus, the development of NMP22 detection devices holds substantial potential for application. In this review, we evaluate the NMP22 sensors developed over the past decade, including electrochemical, colorimetric, and fluorescence biosensors. These sensors have enhanced detection sensitivity and overcome the limitations of existing diagnostic methods. However, many emerging devices exhibit deficiencies that limit their potential clinical use, therefore, we propose how sensor design can be optimized to enhance the likelihood of clinical translation and discuss the future applications of NMP22 as a legacy biomarker, providing insights for the design of new sensors.

3.
Int J Inj Contr Saf Promot ; : 1-12, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712966

ABSTRACT

As the popularity of electric bicycles (e-bikes) continues to surge, the number of accidents involving them has commensurately increased. A significant factor contributing to the high fatality rate in these accidents is the low usage of helmets among e-bike riders. Helmets have been proven to reduce the severity of injuries, yet their usage remains unexpectedly low. This issue is particularly pronounced among college students, the primary buyer group for e-bikes. Regrettably, there is a lack of research exploring their intentions to wear helmets. Understanding determinants of their intentions to wear helmets is crucial in promoting safe e-bike travel. Therefore, the present study aims to develop an integrated theoretical model that combines the Theory of Planned Behavior (TPB) and the Health Belief Model (HBM) to examine the factors influencing e-bike riders' helmet-wearing intentions among college students. Additionally, two variables-descriptive norms and law enforcement-are incorporated. The results indicate that the integrated model accounts for 76% of the variance in helmet-wearing intention, surpassing single-theory models. Specifically, the TPB accounts for 65%, while the HBM explains 53%. Notably, law enforcement emerges as the most influential factor, highlighting the crucial role of enforcing regulations and promoting awareness. Other significant factors include subjective and descriptive norms, attitudes, perceived benefits, perceived susceptibility, perceived barriers, and perceived severity. These findings provide valuable insights for policy development and targeted interventions aimed at improving helmet wear rates among e-bike riders, especially among the college student population.

4.
Sci Total Environ ; 932: 173061, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723970

ABSTRACT

Peanut yield and quality face significant threats due to climate change and soil degradation. The potential of biochar technology to address this challenge remains unanswered, though biochar is acknowledged for its capacity to enhance the soil microbial community and plant nitrogen (N) supply. A field study was conducted in 2021 on oil peanuts grown in a sand-loamy Primisol that received organic amendments at 20 Mg ha-1. The treatments consisted of biochar amendments derived from poultry manure (PB), rice husk (RB), and maize residue (MB), as well as manure compost (OM) amendment, compared to no organic amendment (CK). In 2022, during the second year after amendment, samples of bulk topsoil, rooted soil, and plants were collected at the peanut harvest. The analysis included the assessment of soil quality, peanut growth traits, microbial community, nifH gene abundance, and biological N fixation (BNF) rate. Compared to the CK, the OM treatment led to an 8 % increase in peanut kernel yield, but had no effect on kernel quality in terms of oil production. Conversely, both PB and MB treatments increased kernel yield by 10 %, whereas RB treatment showed no change in yield. Moreover, all biochar amendments significantly improved oilseed quality by 10-25 %, notably increasing the proportion of oleic acid by up to 70 %. Similarly, while OM amendment slightly decreased root development, all biochar treatments significantly enhanced root development by over 80 %. Furthermore, nodule number, fresh weight per plant, and the nifH gene abundance in rooted soil remained unchanged under OM and PB treatments but was significantly enhanced under RB and MB treatments compared to CK. Notably, all biochar amendments, excluding OM, increased the BNF rate and N-acetyl-glucosaminidase activity. These changes were attributed to alterations in soil aggregation, moisture retention, and phosphorus availability, which were influenced by the diverse physical and chemical properties of biochars. Overall, maize residue biochar contributed synergistically to enhancing soil fertility, peanut yield, and quality while also promoting increased root development, a shift in the diazotrophic community and BNF.


Subject(s)
Arachis , Charcoal , Nitrogen Fixation , Plant Roots , Soil , Arachis/growth & development , Soil/chemistry , Soil Microbiology , Fertilizers , Manure
5.
BMC Genomics ; 25(1): 447, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714941

ABSTRACT

BACKGROUND: The health and size of the testes are crucial for boar fertility. Testicular development is tightly regulated by epigenetics. N6-methyladenosine (m6A) modification is a prevalent internal modification on mRNA and plays an important role in development. The mRNA m6A methylation in boar testicular development still needs to be investigated. RESULTS: Using the MeRIP-seq technique, we identify and profile m6A modification in boar testes between piglets and adults. The results showed 7783 distinct m6A peaks in piglets and 6590 distinct m6A peaks in adults, with 2,471 peaks shared between the two groups. Enrichment of GO and KEGG analysis reveal dynamic m6A methylation in various biological processes and signalling pathways. Meanwhile, we conjointly analyzed differentially methylated and expressed genes in boar testes before and after sexual maturity, and reproductive related genes (TLE4, TSSK3, TSSK6, C11ORF94, PATZ1, PHLPP1 and PAQR7) were identified. Functional enrichment analysis showed that differential genes are associated with important biological functions, including regulation of growth and development, regulation of metabolic processes and protein catabolic processes. CONCLUSION: The results demonstrate that m6A methylation, differential expression and the related signalling pathways are crucial for boar testicular development. These results suggest a role for m6A modification in boar testicular development and provided a resource for future studies on m6A function in boar testicular development.


Subject(s)
Adenosine , Sexual Maturation , Testis , Animals , Male , Testis/metabolism , Testis/growth & development , Adenosine/analogs & derivatives , Adenosine/metabolism , Swine/genetics , Sexual Maturation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Methylation , Gene Expression Regulation, Developmental , Signal Transduction , Gene Expression Profiling
6.
Conserv Biol ; : e14266, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578127

ABSTRACT

Survival of the immobile embryo in response to rising temperature is important to determine a species' vulnerability to climate change. However, the collective effects of 2 key thermal characteristics associated with climate change (i.e., rising average temperature and acute heat events) on embryonic survival remain largely unexplored. We used empirical measurements and niche modeling to investigate how chronic and acute heat stress independently and collectively influence the embryonic survival of lizards across latitudes. We collected and bred lizards from 5 latitudes and incubated their eggs across a range of temperatures to quantify population-specific responses to chronic and acute heat stress. Using an embryonic development model parameterized with measured embryonic heat tolerances, we further identified a collective impact of embryonic chronic and acute heat tolerances on embryonic survival. We also incorporated embryonic chronic and acute heat tolerance in hybrid species distribution models to determine species' range shifts under climate change. Embryos' tolerance of chronic heat (T-chronic) remained consistent across latitudes, whereas their tolerance of acute heat (T-acute) was higher at high latitudes than at low latitudes. Tolerance of acute heat exerted a more pronounced influence than tolerance of chronic heat. In species distribution models, climate change led to the most significant habitat loss for each population and species in its low-latitude distribution. Consequently, habitat for populations across all latitudes will shift toward high latitudes. Our study also highlights the importance of considering embryonic survival under chronic and acute heat stresses to predict species' vulnerability to climate change.


Efectos colectivos del aumento de las temperaturas promedio y los eventos de calor en embriones ovíparos Resumen La supervivencia de los embriones inmóviles en respuesta al incremento de temperatura es importante para determinar la vulnerabilidad de las especies al cambio climático. Sin embargo, los efectos colectivos de dos características térmicas claves asociadas con el cambio climático (i. e., aumento de temperatura promedio y eventos de calor agudo) sobre la supervivencia embrionaria permanecen en gran parte inexplorados. Utilizamos mediciones empíricas y modelos de nicho para investigar cómo el estrés térmico crónico y agudo influye de forma independiente y colectiva en la supervivencia embrionaria de los lagartos en todas las latitudes. Recolectamos y criamos lagartos de cinco latitudes e incubamos sus huevos en un rango de temperaturas para cuantificar las respuestas específicas de la población al estrés por calor crónico y agudo. Posteriormente, mediante un modelo de desarrollo embrionario parametrizado con mediciones de tolerancia embrionaria al calor, identificamos un impacto colectivo de las tolerancias embrionarias al calor agudo y crónico en la supervivencia embrionaria. También incorporamos la tolerancia embrionaria crónica y aguda al calor en modelos de distribución de especies híbridas para determinar los cambios de distribución de las especies bajo el cambio climático. La tolerancia embrionaria al calor crónico (T­crónico) permaneció constante, mientras que la tolerancia al calor agudo (T­agudo) fue mayor en latitudes altas que en latitudes bajas. La tolerancia al calor agudo ejerció una influencia más pronunciada que la tolerancia al calor crónico. En los modelos de distribución de especies, el cambio climático provocó la pérdida de hábitat más significativa para cada población y especie en su distribución de latitudes bajas. En consecuencia, el hábitat para poblaciones en todas las latitudes se desplazará a latitudes altas. Nuestro estudio también resalta la importancia de considerar la supervivencia embrionaria bajo estrés térmico crónico y agudo para predecir la vulnerabilidad de las especies al cambio climático.

7.
Cryobiology ; 115: 104892, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38593909

ABSTRACT

Refreezing the remaining genetic resources after in vitro fertilization (IVF) can conserve genetic materials. However, the precise damage inflicted by repeated freezing and thawing on bovine sperm and its underlying mechanism remain largely unexplored. Thus, this study investigates the impact of repeated freeze-thaw cycles on sperm. Our findings indicate that such cycles significantly reduce sperm viability and motility. Furthermore, the integrity of the sperm plasma membrane and acrosome is compromised during this process, exacerbating the advanced apoptosis triggered by oxidative stress. Additionally, transmission electron microscopy exposed severe damage to the plasma membranes of both the sperm head and tail. Notably, the "9 + 2" structure of the tail was disrupted, along with a significant decrease in the level of the axonemal protein DNAH10, leading to reduced sperm motility. IVF outcomes revealed that repeated freeze-thaw cycles considerably impair sperm fertilization capability, ultimately reducing the blastocyst rate. In summary, our research demonstrates that repeated freeze-thaw cycles lead to a decline in sperm viability and motility, attributed to oxidative stress-induced apoptosis and DNAH10-related dynamic deficiency. As a result, the utility of semen is compromised after repeated freezing.

8.
Global Spine J ; : 21925682241247489, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606957

ABSTRACT

STUDY DESIGN: Retrospective cohort study. OBJECTIVE: The study aimed to compare the radiological parameters, clinical outcomes, and long-term effects of the posterior osteosynthesis with polyaxial screw-rod system and the monoaxial screw-rod system in the treatment of unstable atlas fractures. METHODS: We retrospectively analyzed the clinical data of 33 patients with posterior ORIF for unstable atlas fractures in our hospital from August 2013 to June 2020, with a minimum of 3 years of follow-up. Polyaxial screws (group A) were used in 12 patients and monoaxial screws (group B) in 21 patients. Perioperative data, radiological parameters, and clinical outcomes were collected and compared between the 2 surgical approaches. RESULTS: The operative time, blood loss, time of screw-rod system placement, and hospital stay were significantly lower in group A than in group B. At the last follow-up, the visual analog scale (VAS) score and anterior arch reduction rate of the atlas in group A were lower than those in group B, while the lateral mass displacement (LMD) in group A was higher than that in group B. There was no significant difference between Group A and Group B in terms of the anterior atlantodental interval (AADI), posterior arch reduction rate of the atlas, range of motion (ROM), and neck disability index (NDI). CONCLUSIONS: Monoaxial screws can achieve better reduction results for unstable atlas fractures, especially for the anterior arch of atlas. However, the surgical operation of monoaxial screws is more complicated than that of polyaxial screws and has more complications. Appropriate implants should be selected for the treatment of unstable atlas fractures based on the type of atlas fracture, the experience of surgeons, and the demands of patients.

10.
J Formos Med Assoc ; 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38589275

ABSTRACT

BACKGROUND: Statins may reduce the risk of recurrent gallstone disease by decreasing bile cholesterol saturation and pathogenicity. However, limited studies have investigated this issue. This study aimed to assess whether statin doses and serum cholesterol levels were associated with a decreased risk of recurrent biliary stone diseases after the first event index, with a follow-up time of 15 years. METHODS: Based on the Chang Gung Research Database (CGRD) between January 1, 2001, and December 31, 2020, we enrolled 68,384 patients with the International Classification of Diseases, Ninth and Tenth Revision codes of choledocholithiasis. After exclusions, 32,696 patients were divided into non-statin (<28 cDDD, cumulative defined daily doses) (n = 27,929) and statin (≥28 cDDD) (n = 4767) user groups for analysis. Serum cholesterol trajectories were estimated using group-based trajectory modeling (n = 8410). RESULTS: The statin users had higher Charlson Comorbidity Index (CCI) scores than the non-statin users. Time-dependent Cox regression analysis showed that statin use >365 cDDD was associated with a significantly lower risk of recurrent biliary stones (adjusted hazard ratio [aHR] = 0.28, 95% CI, 0.24-0.34; p < 00.0001), acute pancreatitis (aHR = 0.24, 95% CI, 0.17-0.32, p < 00.0001), and cholangitis (aHR = 0.28, 95% CI, 0.25-0.32, p < 00.0001). Cholecystectomy was also a protective factor for recurrent biliary stones (aHR = 0.41, 95% CI, 0.37-0.46; p < 00.0001). The higher trajectory serum cholesterol group (Group 3) had a lower risk trend for recurrent biliary stones (aHR = 0.79, p = 0.0700) and a lower risk of cholangitis (aHR = 0.79, p = 0.0071). CONCLUSION: This study supports the potential benefits of statin use and the role of cholecystectomy in reducing the risk of recurrent biliary stone diseases.

11.
Epigenetics ; 19(1): 2343593, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38643489

ABSTRACT

Previous studies have indicated that histone methylations act as mediators in the relationship between oestrogen receptor (ER) and breast cancer prognosis, yet the mediating role has never been assessed. Therefore, we investigated seven histone methylations (H3K4me2, H3K4me3, H3K9me1, H3K9me2, H3K9me3, H3K27me3 and H4K20me3) to determine whether they mediate the prognostic impact of ER on breast cancer. Tissue microarrays were constructed from 1045 primary invasive breast tumours, and the expressions of histone methylations were examined by immunohistochemistry. Multifactorial logistic regression was used to analyse the associations between ER and histone methylations. Cox proportional hazard model was performed to assess the relationship between histone methylations and breast cancer prognosis. The mediation effects of histone methylations were evaluated by model-based causal mediation analysis. High expressions of H3K9me1, H3K9me2, H3K4me2, H3K27me3, H4K20me3 were associated with ER positivity, while high expression of H3K9me3 was associated ER negativity. Higher H3K9me2, H3K4me2 and H4K20me3 levels were associated with better prognosis. The association between ER and breast cancer prognosis was most strongly mediated by H4K20me3 (29.07% for OS; 22.42% for PFS), followed by H3K4me2 (11.5% for OS; 10.82% for PFS) and least by H3K9me2 (9.35% for OS; 7.34% for PFS). H4K20me3, H3K4me2 and H3K9me2 mediated the relationship between ER and breast cancer prognosis, which would help to further elucidate the impact of ER on breast cancer prognosis from an epigenetic perspective and provide new ideas for breast cancer treatment.


Subject(s)
Breast Neoplasms , Histones , Lysine/analogs & derivatives , Receptors, Estrogen , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Histones/metabolism , Histones/genetics , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Middle Aged , Prognosis , Methylation , Aged , Adult
12.
Environ Res ; 252(Pt 3): 118923, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38636641

ABSTRACT

Symbiotic nitrogen fixation of Chinese milk vetch (Astragalus sinicus L.) can fix nitrogen from the atmosphere and serve as an organic nitrogen source in agricultural ecosystems. Exogenous organic material application is a common practice of affecting symbiotic nitrogen fixation; however, the results of the regulation activities remain under discussion. Studies on the impact of organic amendments on symbiotic nitrogen fixation have focused on dissolved organic carbon content changes, whereas the impact on dissolved organic carbon composition and the underlying mechanism remain unclear. In situ pot experiments were carried out using soils from a 40-year-old field experiment platform to investigate symbiotic nitrogen fixation rate trends, dissolved organic carbon concentration and component, and diazotroph community structure in roots and in rhizosphere soils following long-term application of different exogenous organic substrates, i.e., green manure, green manure and pig manure, and green manure and rice straw. Remarkable increases in rate were observed in and when compared with that in green manure treatment, with the greatest enhancement observed in the treatment. Moreover, organic amendments, particularly pig manure application, altered diazotroph community composition in rhizosphere soils, therefore increasing the abundance of the host-specific genus Mesorhizobium. Furthermore, organic amendments influence the diazotroph communities through two primary mechanisms. Firstly, the components of dissolved organic carbon promote an increase in available iron, facilitated by the presence of humus substrates. Secondly, the elevated content of dissolved organic carbon and available iron expands the niche breadth of Mesorhizobium within the rhizosphere. Consequently, these alterations result in a modified diazotroph community within the rhizosphere, which in turn influences Mesorhizobium nodulation in the root and symbiotic nitrogen fixation rate. The results of the present study enhance our understanding of the impact of organic amendments on symbiotic nitrogen fixation and the underlying mechanism, highlighting the key role of dissolved organic carbon composition on diazotroph community composition in the rhizosphere.

13.
Inorg Chem ; 63(18): 8366-8375, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38655801

ABSTRACT

The electrochemical nitrogen reduction reaction (eNRR) provides a sustainable green development route for the nitrogen-neutral cycle. In this work, bimetallic CoFe-MIL-88A with two active sites (Fe, Co) were immobilized on a 2D V2CTx MXene surface by in situ growth method to achieve the purpose of the control interface. A large number of heterostructures are formed between small CoFe-MIL-88A and V2CTx, which regulate the electron transfer between the catalyst interfaces. The adsorption and activation of nitrogen on the active sites were enhanced, and the NRR reaction kinetics was accelerated. CoFe-MIL-88A is tightly arranged on V2CTx, which makes CoFe-MIL-88A/V2CTx have better hydrophobicity and can significantly inhibit the hydrogen evolution reaction. The synergistic effect of multicatalytic active sites and multi-interface structure of CoFe-MIL-88A/V2CTx MXene is propitious to nitrogen efficiently and stably to convert into ammonia under environmental conditions with superior selectivity and good catalytic activity. The NH3 yield rate is 29.47 µg h-1 mgcat-1 at -0.3 V vs RHE, and the Faradaic efficiency (FE) is 28.86% at -0.1 V vs RHE. The catalytic mechanism was verified to conform to the distal pathway. This work will provide a new way to develop an MXene-based electrocatalyst for eNRR.

14.
J Mol Med (Berl) ; 102(6): 819-830, 2024 06.
Article in English | MEDLINE | ID: mdl-38568327

ABSTRACT

We conducted a comprehensive metabolomic analysis of plasma samples obtained from pregnant women who displayed varying post-vaccination antibody titers after receiving mRNA-1273-SARS-CoV-2 vaccines. The study involved 62 pregnant women, all of whom had been vaccinated after reaching 24 weeks of gestation. To quantify post-vaccination plasma antibody titers, we employed binding antibody units (BAU) in accordance with the World Health Organization International Standard. Subsequently, we classified the study participants into three distinct BAU/mL categories: those with high titers (above 2000), medium titers (ranging from 1000 to 2000), and low titers (below 1000). Plasma metabolomic profiling was conducted using 1H nuclear magnetic resonance spectroscopy, and the obtained data were correlated with the categorized antibody titers. Notably, in pregnant women exhibiting elevated anti-SARS-CoV-2 antibody titers, reduced plasma concentrations of acetate and urea were observed. A significant negative correlation between these compounds and antibody titers was also evident. An analysis of metabolomics pathways revealed significant inverse associations between antibody titers and four distinct amino acid metabolic pathways: (1) biosynthesis of phenylalanine, tyrosine, and tryptophan; (2) biosynthesis of valine, leucine, and isoleucine; (3) phenylalanine metabolism; and (4) degradation of valine, leucine, and isoleucine. Additionally, an association between the synthesis and degradation pathways of ketone bodies was evident. In conclusion, we identified different metabolic pathways that underlie the diverse humoral responses triggered by COVID-19 mRNA vaccines during pregnancy. Our data hold significant implications for refining COVID-19 vaccination approaches in expectant mothers. KEY MESSAGES : Anti-SARS-CoV-2 antibody titers decline as the number of days since COVID-19 vaccination increases. Anti-SARS-CoV-2 antibody titers are inversely associated with acetate, a microbial-derived metabolite, and urea. Amino acid metabolism is significantly associated with SARS-CoV-2 antibody titers.


Subject(s)
Acetates , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Metabolomics , SARS-CoV-2 , Urea , Vaccination , Humans , Female , Pregnancy , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/blood , Metabolomics/methods , SARS-CoV-2/immunology , Adult , Urea/blood , COVID-19 Vaccines/immunology , Metabolome , 2019-nCoV Vaccine mRNA-1273
15.
Article in English | MEDLINE | ID: mdl-38461114

ABSTRACT

BACKGROUND: High-dose dual therapy (HDDT) using proton-pump inhibitors (PPI) and amoxicillin attracted attention for its simplicity and lower adverse event profile. Besides, vonoprazan is not available worldwide. This real-world study aims to compare the efficacy of esomeprazole-based and rabeprazole-based HDDT regimens and to identify clinical factors influencing outcomes. METHODS: A retrospective study enrolled 346 Helicobacter pylori-infected naïve patients from January 2016 to August 2023. Patients were assigned to either a 14-day esomeprazole-based HDDT (EA-14; esomeprazole 40 mg t.i.d. and amoxicillin 750 mg q.i.d. for 14 days, n = 173) or a 14-day rabeprazole-based HDDT (RA-14; rabeprazole 20 mg and amoxicillin 750 mg q.i.d. for 14 days, n = 173). RESULTS: Five patients from the EA-14 group and 10 from the RA-14 group were lost to follow-up, resulting in 168 and 163 patients for the per-protocol (PP) analysis, respectively. Eradication rates for the EA-14 and RA-14 groups were 90.2% and 80.9% (P = 0.014) in intention-to-treat (ITT) analysis; and 92.9% and 85.9% (P = 0.039) in PP analysis. Adverse event rates were similar between the two groups (11.9% vs 11.7%, P = 0.944). In multiple logistic regression analysis, age≧60 was associated with eradication failure (P = 0.046) and a trend of significance for smoking (P = 0.060) in the EA-14 group but not in the RA-14 group. A trend of significance was also observed for eradication regimens (EA-14 vs RA-14) (P = 0.071). The antibiotic resistance rates were amoxicillin (2.3%), clarithromycin (14.7%), metronidazole (40.3%), and dual resistance to clarithromycin and metronidazole (7.0%). CONCLUSIONS: Esomeprazole-based HDDT achieved over 90% eradication rates but rabeprazole-based HDDT, which failed.

16.
Med Sci Monit ; 30: e943400, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38501164

ABSTRACT

The incidence of miscarriage in early pregnancy, between 5-20 weeks, is common, with a prevalence of between 5-22% of all pregnancies. Miscarriage can have physical, social, and mental health impacts on women and their families. In societies such as Taiwan, where the birth rate is falling and life expectancy is increasing, there is concern that factors that reduce birth rates will have detrimental economic and societal effects. Progesterone has a significant role in maintaining early and successful pregnancy to term. Evidence from preclinical and clinical research on the roles of progesterone has supported recent clinical guidelines in obstetrics and gynecology to reduce rates of early miscarriage and improve methods of assisted reproductive technology (ART). This article aims to present an evidence-based review of current recommendations for the use of progesterone in early pregnancy to reduce miscarriage rates and in luteal phase support for ART, including embryo transfer.


Subject(s)
Abortion, Spontaneous , Progesterone , Pregnancy , Female , Humans , Progesterone/therapeutic use , Abortion, Spontaneous/prevention & control , Pregnancy Rate , Reproductive Techniques, Assisted , Embryo Transfer
17.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38385872

ABSTRACT

Drug discovery and development constitute a laborious and costly undertaking. The success of a drug hinges not only good efficacy but also acceptable absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties. Overall, up to 50% of drug development failures have been contributed from undesirable ADMET profiles. As a multiple parameter objective, the optimization of the ADMET properties is extremely challenging owing to the vast chemical space and limited human expert knowledge. In this study, a freely available platform called Chemical Molecular Optimization, Representation and Translation (ChemMORT) is developed for the optimization of multiple ADMET endpoints without the loss of potency (https://cadd.nscc-tj.cn/deploy/chemmort/). ChemMORT contains three modules: Simplified Molecular Input Line Entry System (SMILES) Encoder, Descriptor Decoder and Molecular Optimizer. The SMILES Encoder can generate the molecular representation with a 512-dimensional vector, and the Descriptor Decoder is able to translate the above representation to the corresponding molecular structure with high accuracy. Based on reversible molecular representation and particle swarm optimization strategy, the Molecular Optimizer can be used to effectively optimize undesirable ADMET properties without the loss of bioactivity, which essentially accomplishes the design of inverse QSAR. The constrained multi-objective optimization of the poly (ADP-ribose) polymerase-1 inhibitor is provided as the case to explore the utility of ChemMORT.


Subject(s)
Deep Learning , Humans , Drug Development , Drug Discovery , Poly(ADP-ribose) Polymerase Inhibitors
18.
Sci Technol Adv Mater ; 25(1): 2315014, 2024.
Article in English | MEDLINE | ID: mdl-38419801

ABSTRACT

The interaction between diverse nanoarchitectured fullerenes and cells is crucial for biomedical applications. Here, we detailed the preparation of hydrophilic self-assembled fullerenes by the liquid-liquid interfacial precipitation (LLIP) method and hydrophilic coating of the materials as a possible vascularization strategy. The interactions of vascular endothelial cells (ECs) with hydrophilic fullerene nanotubes (FNT-P) and hydrophilic fullerene nanowhiskers (FNW-P) were investigated. The average length and diameter of FNT-P were 16 ± 2 µm and 3.4 ± 0.4 µm (i.e. aspect ratios of 4.6), respectively. The average length and diameter of FNW-P were 65 ± 8 µm and 1.2 ± 0.2 µm (i.e. aspect ratios of 53.9), respectively. For two-dimensional (2D) culture after 7 days, the ECs remained viable and proliferated up to ~ 420% and ~ 400% with FNT-P and FNW-P of 50 µg/mL, respectively. Furthermore, an optimized chitosan-based self-healing hydrogel with a modulus of ~400 Pa was developed and used to incorporate self-assembled fullerenes as in vitro three-dimensional (3D) platforms to investigate the impact of FNT-P and FNW-P on ECs within a 3D environment. The addition of FNW-P or FNT-P (50 µg/mL) in the hydrogel system led to proliferation rates of ECs up to ~323% and ~280%, respectively, after 7 days of culture. The ECs in FNW-P hydrogel displayed an elongated shape with aligned morphology, while those in FNT-P hydrogel exhibited a rounded and clustered distribution. Vascular-related gene expressions of ECs were significantly upregulated through interactions with these fullerenes. Thus, the combined use of different nanoarchitectured self-assembled fullerenes and self-healing hydrogels may offer environmental cues influencing EC development in a 3D biomimetic microenvironment, holding promise for advancing vascularization strategy in tissue engineering.


Self-assembled fullerenes with large aspect ratios modulate the morphology and gene expression of endothelial cells within a soft biomimetic 3D microenvironment, representing a promising new vascularization strategy in tissue engineering.

19.
Clin Transl Med ; 14(2): e1529, 2024 02.
Article in English | MEDLINE | ID: mdl-38303609

ABSTRACT

OBJECTIVE: Our study was to elucidate the role of RNA helicase DEAD-Box Helicase 17 (DDX17) in NAFLD and to explore its underlying mechanisms. METHODS: We created hepatocyte-specific Ddx17-deficient mice aim to investigate the impact of Ddx17 on NAFLD induced by a high-fat diet (HFD) as well as methionine and choline-deficient l-amino acid diet (MCD) in adult male mice. RNA-seq and lipidomic analyses were conducted to depict the metabolic landscape, and CUT&Tag combined with chromatin immunoprecipitation (ChIP) and luciferase reporter assays were conducted. RESULTS: In this work, we observed a notable increase in DDX17 expression in the livers of patients with NASH and in murine models of NASH induced by HFD or MCD. After introducing lentiviruses into hepatocyte L02 for DDX17 knockdown or overexpression, we found that lipid accumulation induced by palmitic acid/oleic acid (PAOA) in L02 cells was noticeably weakened by DDX17 knockdown but augmented by DDX17 overexpression. Furthermore, hepatocyte-specific DDX17 knockout significantly alleviated hepatic steatosis, inflammatory response and fibrosis in mice after the administration of MCD and HFD. Mechanistically, our analysis of RNA-seq and CUT&Tag results combined with ChIP and luciferase reporter assays indicated that DDX17 transcriptionally represses Cyp2c29 gene expression by cooperating with CCCTC binding factor (CTCF) and DEAD-Box Helicase 5 (DDX5). Using absolute quantitative lipidomics analysis, we identified a hepatocyte-specific DDX17 deficiency that decreased lipid accumulation and altered lipid composition in the livers of mice after MCD administration. Based on the RNA-seq analysis, our findings suggest that DDX17 could potentially have an impact on the modulation of lipid metabolism and the activation of M1 macrophages in murine NASH models. CONCLUSION: These results imply that DDX17 is involved in NASH development by promoting lipid accumulation in hepatocytes, inducing the activation of M1 macrophages, subsequent inflammatory responses and fibrosis through the transcriptional repression of Cyp2c29 in mice. Therefore, DDX17 holds promise as a potential drug target for the treatment of NASH.


Subject(s)
Lipid Metabolism Disorders , Non-alcoholic Fatty Liver Disease , Animals , Humans , Male , Mice , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Diet, High-Fat/adverse effects , Fibrosis , Gene Expression , Lipid Metabolism/genetics , Lipid Metabolism Disorders/genetics , Lipids , Luciferases/metabolism , Macrophages/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Disease Progression
20.
J Orthop Surg Res ; 19(1): 120, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317156

ABSTRACT

BACKGROUND: Osteosynthesis of unstable atlas fractures preserves joint motion and therefore has a distinct advantage over a range of treatment procedures. To prevent the potential disadvantages associated with osteosynthesis, a new atlas lateral mass screw-plate (LMSP) system has been designed. However, the biomechanical role of using the LMSP system in atlas internal fixation is not known. The aim of this study was to compare the biomechanical stability of a new LMSP with traditional posterior screw and rod (PSR) fixation techniques on the occipitocervical junction (C0-C2) through finite element analysis. METHODS: A nonlinear C0-C2 finite element model of the intact upper cervical spine was developed and validated. The unstable model using the PSR system was then compared with the model using the LMSP system for fixation. A vertical load of 40 N was applied to the C0 to simulate head weight, while a torque of 1.5 Nm was applied to the C0 to simulate flexion, extension, lateral bending, and axial rotation. RESULTS: The range of motion of both systems was close to the intact model. Compared with the LMSP system model, the PSR system model increased flexion, extension, lateral bending, and axial rotation by 4.9%, 3.0%, 5.0%, and 29.5% in the C0-C1 segments, and 4.9%, 2.7%, 2.4%, and 22.6% in the C1-C2, respectively. In flexion, extension, and lateral bending motion, the LMSP system model exhibited similar stress to the PSR system model, while in axial rotation, the PSR system model exhibited higher stress. CONCLUSIONS: The findings of our study indicate that the two tested system models provide comparable stability. However, better stability was achieved during axial rotation with the LMSP system, and in this system, the maximum von Mises stress was less than that of the PSR one. As the atlantoaxial joint functions primarily as a rotational joint, the use of the LMSP system may provide a more stable environment for the joint that has become unstable due to fracture.


Subject(s)
Atlanto-Axial Joint , Spinal Fusion , Finite Element Analysis , Biomechanical Phenomena , Bone Screws , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/surgery , Rotation , Spinal Fusion/methods , Atlanto-Axial Joint/surgery , Range of Motion, Articular
SELECTION OF CITATIONS
SEARCH DETAIL
...