Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
2.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38313282

ABSTRACT

The co-occurrence of chromosome 10 loss and chromosome 7 gain in gliomas is the most frequent loss-gain co-aneuploidy pair in human cancers, a phenomenon that has been investigated without resolution since the late 1980s. Expanding beyond previous gene-centric studies, we investigate the co-occurrence in a genome-wide manner taking an evolutionary perspective. First, by mining large tumor aneuploidy data, we predict that the more likely order is 10 loss followed by 7 gain. Second, by analyzing extensive genomic and transcriptomic data from both patients and cell lines, we find that this co-occurrence can be explained by functional rescue interactions that are highly enriched on 7, which can possibly compensate for any detrimental consequences arising from the loss of 10. Finally, by analyzing transcriptomic data from normal, non-cancerous, human brain tissues, we provide a plausible reason why this co-occurrence happens preferentially in cancers originating in certain regions of the brain.

3.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38077050

ABSTRACT

Decreased intra-tumor heterogeneity (ITH) correlates with increased patient survival and immunotherapy response. However, even highly homogenous tumors may display variability in their aggressiveness, and how immunologic-factors impinge on their aggressiveness remains understudied. Here we studied the mechanisms responsible for the immune-escape of murine tumors with low ITH. We compared the temporal growth of homogeneous, genetically-similar single-cell clones that are rejected vs. those that are not-rejected after transplantation in-vivo using single-cell RNA sequencing and immunophenotyping. Non-rejected clones showed high infiltration of tumor-associated-macrophages (TAMs), lower T-cell infiltration, and increased T-cell exhaustion compared to rejected clones. Comparative analysis of rejection-associated gene expression programs, combined with in-vivo CRISPR knockout screens of candidate mediators, identified Mif (macrophage migration inhibitory factor) as a regulator of immune rejection. Mif knockout led to smaller tumors and reversed non-rejection-associated immune composition, particularly, leading to the reduction of immunosuppressive macrophage infiltration. Finally, we validated these results in melanoma patient data.

4.
Sci Adv ; 8(31): eabj7176, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35921407

ABSTRACT

Cancer is a predominant disease across animals. We applied a comparative genomics approach to systematically characterize genes whose conservation levels correlate positively (PC) or negatively (NC) with cancer resistance estimates across 193 vertebrates. Pathway analysis reveals that NC genes are enriched for metabolic functions and PC genes in cell cycle regulation, DNA repair, and immune response, pointing to their corresponding roles in mediating cancer risk. We find that PC genes are less tolerant to loss-of-function (LoF) mutations, are enriched in cancer driver genes, and are associated with germline mutations that increase human cancer risk. Their relevance to cancer risk is further supported via the analysis of mouse functional genomics and cancer mortality of zoo mammals' data. In sum, our study describes a cross-species genomic analysis pointing to candidate genes that may mediate human cancer risk.


Subject(s)
Genomics , Neoplasms , Animals , Humans , Loss of Function Mutation , Mammals , Mice , Neoplasms/genetics
6.
iScience ; 25(5): 104311, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35502318

ABSTRACT

Novel strategies are needed to identify drug targets and treatments for the COVID-19 pandemic. The altered gene expression of virus-infected host cells provides an opportunity to specifically inhibit viral propagation via targeting the synthetic lethal and synthetic dosage lethal (SL/SDL) partners of such altered host genes. Pursuing this disparate antiviral strategy, here we comprehensively analyzed multiple in vitro and in vivo bulk and single-cell RNA-sequencing datasets of SARS-CoV-2 infection to predict clinically relevant candidate antiviral targets that are SL/SDL with altered host genes. The predicted SL/SDL-based targets are highly enriched for infected cell inhibiting genes reported in four SARS-CoV-2 CRISPR-Cas9 genome-wide genetic screens. We further selected a focused subset of 26 genes that we experimentally tested in a targeted siRNA screen using human Caco-2 cells. Notably, as predicted, knocking down these targets reduced viral replication and cell viability only under the infected condition without harming noninfected healthy cells.

7.
Nat Commun ; 12(1): 6512, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764240

ABSTRACT

Recent studies have reported that genome editing by CRISPR-Cas9 induces a DNA damage response mediated by p53 in primary cells hampering their growth. This could lead to a selection of cells with pre-existing p53 mutations. In this study, employing an integrated computational and experimental framework, we systematically investigated the possibility of selection of additional cancer driver mutations during CRISPR-Cas9 gene editing. We first confirm the previous findings of the selection for pre-existing p53 mutations by CRISPR-Cas9. We next demonstrate that similar to p53, wildtype KRAS may also hamper the growth of Cas9-edited cells, potentially conferring a selective advantage to pre-existing KRAS-mutant cells. These selective effects are widespread, extending across cell-types and methods of CRISPR-Cas9 delivery and the strength of selection depends on the sgRNA sequence and the gene being edited. The selection for pre-existing p53 or KRAS mutations may confound CRISPR-Cas9 screens in cancer cells and more importantly, calls for monitoring patients undergoing CRISPR-Cas9-based editing for clinical therapeutics for pre-existing p53 and KRAS mutations.


Subject(s)
CRISPR-Associated Protein 9/metabolism , Gene Editing/methods , Proto-Oncogene Proteins p21(ras)/metabolism , CRISPR-Associated Protein 9/genetics , Computational Biology , Humans , Mutation/genetics , Proto-Oncogene Proteins p21(ras)/genetics
8.
Mol Syst Biol ; 17(11): e10260, 2021 11.
Article in English | MEDLINE | ID: mdl-34709707

ABSTRACT

Tremendous progress has been made to control the COVID-19 pandemic caused by the SARS-CoV-2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS-CoV-2 infection using genome-scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS-CoV-2 infection. We next applied the GEM-based metabolic transformation algorithm to predict anti-SARS-CoV-2 targets that counteract the virus-induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco-2 cells. Further generating and analyzing RNA-sequencing data of remdesivir-treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti-SARS-CoV-2 drug. Our study provides clinical data-supported candidate anti-SARS-CoV-2 targets for future evaluation, demonstrating host metabolism targeting as a promising antiviral strategy.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/metabolism , Metabolic Networks and Pathways/genetics , Pandemics , SARS-CoV-2/physiology , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Animals , COVID-19/virology , Caco-2 Cells , Chlorocebus aethiops , Datasets as Topic , Drug Development , Drug Repositioning , Host-Pathogen Interactions , Humans , RNA, Small Interfering , Sequence Analysis, RNA , Vero Cells , COVID-19 Drug Treatment
9.
bioRxiv ; 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34545363

ABSTRACT

Novel strategies are needed to identify drug targets and treatments for the COVID-19 pandemic. The altered gene expression of virus-infected host cells provides an opportunity to specifically inhibit viral propagation via targeting the synthetic lethal (SL) partners of such altered host genes. Pursuing this antiviral strategy, here we comprehensively analyzed multiple in vitro and in vivo bulk and single-cell RNA-sequencing datasets of SARS-CoV-2 infection to predict clinically relevant candidate antiviral targets that are SL with altered host genes. The predicted SL-based targets are highly enriched for infected cell inhibiting genes reported in four SARS-CoV-2 CRISPR-Cas9 genome-wide genetic screens. Integrating our predictions with the results of these screens, we further selected a focused subset of 26 genes that we experimentally tested in a targeted siRNA screen using human Caco-2 cells. Notably, as predicted, knocking down these targets reduced viral replication and cell viability only under the infected condition without harming non-infected cells. Our results are made publicly available, to facilitate their in vivo testing and further validation.

10.
Elife ; 102021 07 27.
Article in English | MEDLINE | ID: mdl-34313216

ABSTRACT

Background: Until coronavirus disease 2019 (COVID-19) drugs specifically developed to treat COVID-19 become more widely accessible, it is crucial to identify whether existing medications have a protective effect against severe disease. Toward this objective, we conducted a large population study in Clalit Health Services (CHS), the largest healthcare provider in Israel, insuring over 4.7 million members. Methods: Two case-control matched cohorts were assembled to assess which medications, acquired in the last month, decreased the risk of COVID-19 hospitalization. Case patients were adults aged 18 to 95 hospitalized for COVID-19. In the first cohort, five control patients, from the general population, were matched to each case (n=6202); in the second cohort, two non-hospitalized SARS-CoV-2 positive control patients were matched to each case (n=6919). The outcome measures for a medication were: odds ratio (OR) for hospitalization, 95% confidence interval (CI), and the p-value, using Fisher's exact test. False discovery rate was used to adjust for multiple testing. Results: Medications associated with most significantly reduced odds for COVID-19 hospitalization include: ubiquinone (OR=0.185, 95% CI [0.058 to 0.458], p<0.001), ezetimibe (OR=0.488, 95% CI [0.377 to 0.622], p<0.001), rosuvastatin (OR=0.673, 95% CI [0.596 to 0.758], p<0.001), flecainide (OR=0.301, 95% CI [0.118 to 0.641], p<0.001), and vitamin D (OR=0.869, 95% CI [0.792 to 0.954], p<0.003). Remarkably, acquisition of artificial tears, eye care wipes, and several ophthalmological products were also associated with decreased risk for hospitalization. Conclusions: Ubiquinone, ezetimibe, and rosuvastatin, all related to the cholesterol synthesis pathway were associated with reduced hospitalization risk. These findings point to a promising protective effect which should be further investigated in controlled, prospective studies. Funding: This research was supported in part by the Intramural Research Program of the National Institutes of Health, NCI.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Case-Control Studies , Cohort Studies , Ezetimibe/administration & dosage , Female , Hospitalization , Humans , Male , Middle Aged , Odds Ratio , Rosuvastatin Calcium/administration & dosage , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Severity of Illness Index , Ubiquinone/administration & dosage , Vitamin D/administration & dosage , Young Adult
11.
Nature ; 592(7852): 138-143, 2021 04.
Article in English | MEDLINE | ID: mdl-33731925

ABSTRACT

A variety of species of bacteria are known to colonize human tumours1-11, proliferate within them and modulate immune function, which ultimately affects the survival of patients with cancer and their responses to treatment12-14. However, it is not known whether antigens derived from intracellular bacteria are presented by the human leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, that were derived from 41 species of bacteria. We identified recurrent bacterial peptides in tumours from different patients, as well as in different tumours from the same patient. Our study reveals that peptides derived from intracellular bacteria can be presented by tumour cells and elicit immune reactivity, and thus provides insight into a mechanism by which bacteria influence activation of the immune system and responses to therapy.


Subject(s)
Antigens, Bacterial/analysis , Antigens, Bacterial/immunology , Bacteria/immunology , HLA Antigens/immunology , Melanoma/immunology , Melanoma/microbiology , Peptides/analysis , Peptides/immunology , Antigen Presentation , Bacteria/classification , Bacteria/genetics , Cell Line, Tumor , Coculture Techniques , HLA Antigens/analysis , Humans , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/pathology , Neoplasm Metastasis/immunology , Phylogeny , RNA, Ribosomal, 16S/genetics
12.
bioRxiv ; 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-33532779

ABSTRACT

Tremendous progress has been made to control the COVID-19 pandemic caused by the SARS-CoV-2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS-CoV-2 infection using genome-scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS-CoV-2 infection. We next applied the GEM-based metabolic transformation algorithm to predict anti-SARS-CoV-2 targets that counteract the virus-induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco-2 cells. Further generating and analyzing RNA-sequencing data of remdesivir-treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti-SARS-CoV-2 drug. Our study provides clinical data-supported candidate anti-SARS-CoV-2 targets for future evaluation, demonstrating host metabolism-targeting as a promising antiviral strategy.

13.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: mdl-33523837

ABSTRACT

Various characteristics of cancers exhibit tissue specificity, including lifetime cancer risk, onset age, and cancer driver genes. Previously, the large variation in cancer risk across human tissues was found to strongly correlate with the number of stem cell divisions and abnormal DNA methylation levels. Here, we study the role of synthetic lethality in cancer risk. Analyzing normal tissue transcriptomics data in the Genotype-Tissue Expression project, we quantify the extent of co-inactivation of cancer synthetic lethal (cSL) gene pairs and find that normal tissues with more down-regulated cSL gene pairs have lower and delayed cancer risk. Consistently, more cSL gene pairs become up-regulated in cells treated by carcinogens and throughout premalignant stages in vivo. We also show that the tissue specificity of numerous tumor suppressor genes is associated with the expression of their cSL partner genes across normal tissues. Overall, our findings support the possible role of synthetic lethality in tumorigenesis.


Subject(s)
Neoplasms , Synthetic Lethal Mutations , Cell Transformation, Neoplastic/genetics , DNA Methylation , Genes, Tumor Suppressor , Humans , Neoplasms/genetics
15.
medRxiv ; 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33083810

ABSTRACT

BACKGROUND: Until COVID-19 drugs specifically developed to treat COVID-19 become more widely accessible, it is crucial to identify whether existing medications have a protective effect against severe disease. Towards this objective, we conducted a large population study in Clalit Health Services (CHS), the largest healthcare provider in Israel, insuring over 4.7 million members. METHODS: Two case-control matched cohorts were assembled to assess which medications, acquired in the last month, decreased the risk of COVID-19 hospitalization. Case patients were adults aged 18-95 hospitalized for COVID-19. In the first cohort, five control patients, from the general population, were matched to each case (n=6202); in the second cohort, two non-hospitalized SARS-CoV-2 positive control patients were matched to each case (n=6919). The outcome measures for a medication were: odds ratio (OR) for hospitalization, 95% confidence interval (CI), and the p-value, using Fisher's exact test. False discovery rate was used to adjust for multiple testing. RESULTS: Medications associated with most significantly reduced odds for COVID-19 hospitalization include: ubiquinone (OR=0.185, 95% CI (0.058 to 0.458), p<0.001), ezetimibe (OR=0.488, 95% CI ((0.377 to 0.622)), p<0.001), rosuvastatin (OR=0.673, 95% CI (0.596 to 0.758), p<0.001), flecainide (OR=0.301, 95% CI (0.118 to 0.641), p<0.001), and vitamin D (OR=0.869, 95% CI (0.792 to 0.954), p<0.003). Remarkably, acquisition of artificial tears, eye care wipes, and several ophthalmological products were also associated with decreased risk for hospitalization. CONCLUSIONS: Ubiquinone, ezetimibe and rosuvastatin, all related to the cholesterol synthesis pathway were associated with reduced hospitalization risk. These findings point to a promising protective effect which should be further investigated in controlled, prospective studies. FUNDING: This research was supported in part by the Intramural Research Program of the National Institutes of Health, NCI.

16.
Mol Syst Biol ; 16(7): e9628, 2020 07.
Article in English | MEDLINE | ID: mdl-32729248

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has is a global health challenge. Angiotensin-converting enzyme 2 (ACE2) is the host receptor for SARS-CoV-2 entry. Recent studies have suggested that patients with hypertension and diabetes treated with ACE inhibitors (ACEIs) or angiotensin receptor blockers have a higher risk of COVID-19 infection as these drugs could upregulate ACE2, motivating the study of ACE2 modulation by drugs in current clinical use. Here, we mined published datasets to determine the effects of hundreds of clinically approved drugs on ACE2 expression. We find that ACEIs are enriched for ACE2-upregulating drugs, while antineoplastic agents are enriched for ACE2-downregulating drugs. Vorinostat and isotretinoin are the top ACE2 up/downregulators, respectively, in cell lines. Dexamethasone, a corticosteroid used in treating severe acute respiratory syndrome and COVID-19, significantly upregulates ACE2 both in vitro and in vivo. Further top ACE2 regulators in vivo or in primary cells include erlotinib and bleomycin in the lung and vancomycin, cisplatin, and probenecid in the kidney. Our study provides leads for future work studying ACE2 expression modulators.


Subject(s)
Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , A549 Cells , Angiotensin-Converting Enzyme 2 , Betacoronavirus , Bleomycin/pharmacology , COVID-19 , Dexamethasone/pharmacology , Drug Design , Drug Evaluation, Preclinical , Erlotinib Hydrochloride/pharmacology , Fluphenazine/pharmacology , HEK293 Cells , Humans , Kidney/drug effects , Lung/drug effects , MCF-7 Cells , Pandemics , Peptidyl-Dipeptidase A , SARS-CoV-2 , Systems Biology , Up-Regulation , Vemurafenib/pharmacology , COVID-19 Drug Treatment
17.
Nature ; 586(7827): 113-119, 2020 10.
Article in English | MEDLINE | ID: mdl-32707573

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.


Subject(s)
Antiviral Agents/analysis , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Drug Evaluation, Preclinical , Drug Repositioning , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/drug effects , Betacoronavirus/growth & development , COVID-19 , Cell Line , Cysteine Proteinase Inhibitors/analysis , Cysteine Proteinase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Gene Expression Regulation/drug effects , Humans , Hydrazones , Induced Pluripotent Stem Cells/cytology , Models, Biological , Morpholines/analysis , Morpholines/pharmacology , Pandemics , Pyrimidines , Reproducibility of Results , SARS-CoV-2 , Small Molecule Libraries/analysis , Small Molecule Libraries/pharmacology , Triazines/analysis , Triazines/pharmacology , Virus Internalization/drug effects , Virus Replication/drug effects , COVID-19 Drug Treatment
18.
Gigascience ; 8(4)2019 04 01.
Article in English | MEDLINE | ID: mdl-30978274

ABSTRACT

BACKGROUND: Advances in large-scale tumor sequencing have led to an understanding that there are combinations of genomic and transcriptomic alterations specific to tumor types, shared across many patients. Unfortunately, computational identification of functionally meaningful and recurrent alteration patterns within gene/protein interaction networks has proven to be challenging. FINDINGS: We introduce a novel combinatorial method, cd-CAP (combinatorial detection of conserved alteration patterns), for simultaneous detection of connected subnetworks of an interaction network where genes exhibit conserved alteration patterns across tumor samples. Our method differentiates distinct alteration types associated with each gene (rather than relying on binary information of a gene being altered or not) and simultaneously detects multiple alteration profile conserved subnetworks. CONCLUSIONS: In a number of The Cancer Genome Atlas datasets, cd-CAP identified large biologically significant subnetworks with conserved alteration patterns, shared across many tumor samples.


Subject(s)
Computational Biology , Gene Expression Profiling , Gene Regulatory Networks , Neoplasms/genetics , Transcriptome , Algorithms , Biomarkers, Tumor , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling/methods , Genomics/methods , Humans , Neoplasms/diagnosis , Neoplasms/metabolism , Neoplasms/mortality , Prognosis , Protein Interaction Mapping , Protein Interaction Maps
19.
Mol Syst Biol ; 15(3): e8323, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30858180

ABSTRACT

Most patients with advanced cancer eventually acquire resistance to targeted therapies, spurring extensive efforts to identify molecular events mediating therapy resistance. Many of these events involve synthetic rescue (SR) interactions, where the reduction in cancer cell viability caused by targeted gene inactivation is rescued by an adaptive alteration of another gene (the rescuer). Here, we perform a genome-wide in silico prediction of SR rescuer genes by analyzing tumor transcriptomics and survival data of 10,000 TCGA cancer patients. Predicted SR interactions are validated in new experimental screens. We show that SR interactions can successfully predict cancer patients' response and emerging resistance. Inhibiting predicted rescuer genes sensitizes resistant cancer cells to therapies synergistically, providing initial leads for developing combinatorial approaches to overcome resistance proactively. Finally, we show that the SR analysis of melanoma patients successfully identifies known mediators of resistance to immunotherapy and predicts novel rescuers.


Subject(s)
Computational Biology , Drug Resistance, Neoplasm/genetics , Drug Synergism , Melanoma/genetics , Female , Gene Expression Profiling , Humans , Immunotherapy , Male , Melanoma/drug therapy , Molecular Targeted Therapy , Synthetic Lethal Mutations
20.
Nat Commun ; 9(1): 2546, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29959327

ABSTRACT

While synthetic lethality (SL) holds promise in developing effective cancer therapies, SL candidates found via experimental screens often have limited translational value. Here we present a data-driven approach, ISLE (identification of clinically relevant synthetic lethality), that mines TCGA cohort to identify the most likely clinically relevant SL interactions (cSLi) from a given candidate set of lab-screened SLi. We first validate ISLE via a benchmark of large-scale drug response screens and by predicting drug efficacy in mouse xenograft models. We then experimentally test a select set of predicted cSLi via new screening experiments, validating their predicted context-specific sensitivity in hypoxic vs normoxic conditions and demonstrating cSLi's utility in predicting synergistic drug combinations. We show that cSLi can successfully predict patients' drug treatment response and provide patient stratification signatures. ISLE thus complements existing actionable mutation-based methods for precision cancer therapy, offering an opportunity to expand its scope to the whole genome.


Subject(s)
Antineoplastic Agents/therapeutic use , High-Throughput Screening Assays , Neoplasms/drug therapy , Precision Medicine/methods , Synthetic Lethal Mutations/drug effects , Animals , Biomarkers, Pharmacological , Cell Hypoxia , Cell Line, Tumor , Drug Combinations , Drug Synergism , Humans , Mice , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/mortality , Patient Selection , Precision Medicine/statistics & numerical data , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...