Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Microb Biotechnol ; 16(4): 862-867, 2023 04.
Article in English | MEDLINE | ID: mdl-36636832

ABSTRACT

A double-stranded RNA (dsRNA) phage phiYY is able to kill a pyomelanin-producing Pseudomonas aeruginosa strain, which was isolated from a 40-year-old man with interstitial lung disease (ILD) and chronic lung infection. Phage therapy was used as a last resort for this patient. The three-course nebulized phiYY treatment was used to reduce the bacterial burden and clinical symptoms of the patient. Recurrences of P. aeruginosa infections were observed 1-3 days post phage therapy. The recurrent isolates exhibited distinct antibiotic-susceptibility profiles compared with the original strain yet were still susceptible to phiYY. This assay represents the application of dsRNA phage in the treatment of chronic lung infection, albeit the safety and efficacy of the dsRNA phage require further assessment.


Subject(s)
Bacteriophages , Pseudomonas Infections , Male , Humans , Adult , Bacteriophages/genetics , Pseudomonas Infections/therapy , Pseudomonas Infections/microbiology , RNA, Double-Stranded , Lung/microbiology , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents
2.
Biosens Bioelectron ; 198: 113799, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34823965

ABSTRACT

Staphylococcus aureus (S. aureus), considered as a common foodborne pathogenic microorganism, usually causes food poisoning and various infectious diseases. Therefore, development of rapid and accurate bacterial detection method is the key to preventing food poisoning and achieving early diagnosis and treatment of various infectious diseases caused by S. aureus. Biolayer interferometry (BLI) technology is a novel technique of label-free optical analysis for real-time monitoring of biomolecular interactions. The C54A mutation induced the lytic activity loss of phage lysin LysGH15 but retained the capacity for specific recognizing and binding S. aureus. In this study, a novel method for the detection of S. aureus was established using the C54A mutant LysGH15 as the receptor in combination with BLI. Using this BLI-based method, S. aureus whole cells could be directly assayed and the limit of detection was 13 CFU/mL with a binding time of 12 min. Because the C54A mutant LysGH15 recognizes S. aureus with very high specificity, the method can exclude potential interference from other bacterial species. In addition, this method could also distinguish between viable and dead S. aureus. Moreover, S. aureus was successfully detected in ice cubes and light soy sauce by using this method. Collectively, these results indicate that the LysGH15-based BLI method can be used as an efficient and reliable diagnostic tool in the field of food safety and other related fields for the rapid, sensitive, label-free, and real-time detection of S. aureus.


Subject(s)
Biosensing Techniques , Staphylococcus aureus , Interferometry , Staphylococcus Phages , Staphylococcus aureus/genetics , Technology
3.
Emerg Microbes Infect ; 10(1): 612-618, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33703996

ABSTRACT

Phage therapy is recognized as a promising alternative to antibiotics in treating pulmonary bacterial infections, however, its use has not been reported for treating secondary bacterial infections during virus pandemics such as coronavirus disease 2019 (COVID-19). We enrolled 4 patients hospitalized with critical COVID-19 and pulmonary carbapenem-resistant Acinetobacter baumannii (CRAB) infections to compassionate phage therapy (at 2 successive doses of 109 plaque-forming unit phages). All patients in our COVID-19-specific intensive care unit (ICU) with CRAB positive in bronchoalveolar lavage fluid or sputum samples were eligible for study inclusion if antibiotic treatment failed to eradicate their CRAB infections. While phage susceptibility testing revealed an identical profile of CRAB strains from these patients, treatment with a pre-optimized 2-phage cocktail was associated with reduced CRAB burdens. Our results suggest the potential of phages on rapid responses to secondary CRAB outbreak in COVID-19 patients.


Subject(s)
Acinetobacter Infections/etiology , Acinetobacter Infections/therapy , Acinetobacter baumannii/virology , Bacteriophages/physiology , COVID-19/complications , Coinfection/therapy , Phage Therapy , Podoviridae/physiology , Acinetobacter Infections/microbiology , Acinetobacter baumannii/physiology , Aged , Aged, 80 and over , COVID-19/virology , Coinfection/microbiology , Female , Humans , Male , SARS-CoV-2/physiology
4.
Virus Genes ; 56(4): 498-507, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32449140

ABSTRACT

Acinetobacter pittii is an important pathogen causing nosocomial infection worldwide. In this study, a multidrug-resistant A. pittii ABC38 was used as host bacterium to isolate the lytic phage vB_ApiP_XC38. The biological characteristics of vB_ApiP_XC38 were studied and the genome was sequenced and analyzed. vB_ApiP_XC38 belonged to Podoviridae family. The phage had double-stranded genome, which comprised 79,328 bp with 39.58% G+C content displaying very low similarity (< 1% identity) with published genomes of other phages and bacteria. A total of 97 open reading frames (ORFs) were predicted and contained nucleotide metabolism and replication module, structural components module, and lysis module. The ANI, AAI, and phylogenetic analysis indicated that all phages were found distant from vB_ApiP_XC38. Altogether, morphological, genomics, and phylogenetic analysis suggest that vB_ApiP_XC38 is more likely a novel phage of A. pittii.


Subject(s)
Acinetobacter/virology , Bacteriophages/genetics , Genome, Viral/genetics , Podoviridae/genetics , Acinetobacter/genetics , Base Composition/genetics , DNA, Viral/genetics , Genomics , Open Reading Frames/genetics , Phylogeny
5.
Emerg Microbes Infect ; 9(1): 771-774, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32212918

ABSTRACT

We report a case of a 63-year-old female patient who developed a recurrent urinary tract infection (UTI) with extensively drug-resistant Klebsiella pneumoniae (ERKp). In the initial two rounds of phage therapy, phage resistant mutants developed within days. Although ERKp strains were completely resistant to sulfamethoxazole-trimethoprim, the combination of sulfamethoxazole-trimethoprim with the phage cocktail inhibited the emergence of phage resistant mutant in vitro, and the UTI of patient was successfully cured by this combination. Thus, we propose that non-active antibiotic and bacteriophage synergism (NABS) might be an alternative strategy in personalized phage therapy.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Klebsiella Infections/therapy , Phage Therapy , Urinary Tract Infections/therapy , Female , Humans , Klebsiella pneumoniae , Microbial Sensitivity Tests , Middle Aged , Mutation , Recurrence , Urinary Tract Infections/microbiology
6.
Viruses ; 11(11)2019 11 19.
Article in English | MEDLINE | ID: mdl-31752386

ABSTRACT

The bacterial pathogen Klebsiella pneumoniae causes urinary tract infections in immunocompromised patients. Generally, the overuse of antibiotics contributes to the potential development and the spread of antibiotic resistance. In fact, certain strains of K. pneumoniae are becoming increasingly resistant to antibiotics, making infection by these strains more difficult to treat. The use of bacteriophages to control pathogens may offer a non-antibiotic-based approach to treat multidrug-resistant (MDR) infections. However, a detailed understanding of phage-host interactions is crucial in order to explore the potential success of phage-therapy for treatment. In this study, we investigated the molecular epidemiology of nine carbapenemase-producing K. pneumoniae isolates from a local hospital in Shanghai, China. All strain isolates belong to sequence type 11 (ST11) and harbor the blaKPC-2 gene. The S1-PFGE (S1 nuclease pulsed field gel electrophoresis) pattern of the isolates did not show any relationship to the multilocus sequence typing (MLST) profiles. In addition, we characterized phage 117 and phage 31 and assessed the potential application of phage therapy in treating K. pneumoniae infections in vitro. The results of morphological and genomic analyses suggested that both phages are affiliated to the T7 virus genus of the Podoviridae family. We also explored phage-host interactions during growth in both planktonic cells and biofilms. The phages' heterogeneous lytic capacities against K. pneumoniae strains were demonstrated experimentally. Subsequent culture and urine experiments with phage 117 and host Kp36 initially demonstrated a strong lytic activity of the phages. However, rapid regrowth was observed following the initial lysis which suggests that phage resistant mutants were selected in the host populations. Additionally, a phage cocktail (117 + 31) was prepared and investigated for antimicrobial activity. In Luria Broth (LB) cultures, we observed that the cocktail showed significantly higher antimicrobial activity than phage 117 alone, but this was not observed in urine samples. Together, the results demonstrate the potential therapeutic value of phages in treating K. pneumoniae urinary tract infections.


Subject(s)
Bacteriolysis , Bacteriophages/physiology , Host-Pathogen Interactions , Klebsiella Infections/microbiology , Klebsiella pneumoniae/physiology , Klebsiella pneumoniae/virology , Anti-Bacterial Agents/pharmacology , Electrophoresis, Gel, Pulsed-Field , Host Specificity , Humans , Klebsiella Infections/drug therapy , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Multilocus Sequence Typing
7.
Virus Genes ; 55(5): 696-706, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31254238

ABSTRACT

Bacteriophages have been recently revisited as an alternative biocontrol tool due to the limitations of antibiotic treatment. In this study, we reported on the biological characteristics and genomic information of vB_KpnS_GH-K3 (abbreviated as GH-K3), a Klebsiella phage of the Siphoviridae family, which was previously isolated from a hospital sewage system. One-step growth curve analysis indicated that the burst size of GH-K3 was 291 PFU/cell. GH-K3 maintained a stable titer in a broad range of pH values (6-10) and temperature (up to 50 °C). Based on bioinformatics analysis, GH-K3 comprises of 49,427 bp containing a total of 77 open reading frames (ORFs), which share high degree of nucleotide similarity and close evolutionary relationships with at least 12 other Klebsiella phages. Of note, GH-K3 gp32 was identified as a unique ORF. The major segment of gp32 sequence at the C-terminus (residues 351-907) was found highly variable as determined by its mismatch with the nucleotide and protein sequences available at NCBI database. Furthermore, HHpred analysis indicated that GH-K3 gp32 contains three domains (PDB ID: 5W6S_A, 3GQ8_A and 1BHE_A) similar to depolymerase (depoKP36) of Klebsiella phage KP36 suggestive of a potential depolymerase activity during host receptor-binding in the processes of phage infection. Altogether, the current data revealed a novel putative depolymerase-like protein which is most likely to play an important role in phage-host interaction.


Subject(s)
Bacteriophages/growth & development , Klebsiella/virology , Bacteriophages/drug effects , Bacteriophages/genetics , Bacteriophages/radiation effects , Genome, Viral , Hydrogen-Ion Concentration , Microbial Viability/drug effects , Microbial Viability/radiation effects , Open Reading Frames , Sequence Homology , Synteny , Temperature , Viral Load , Viral Proteins/genetics
8.
Front Microbiol ; 10: 1189, 2019.
Article in English | MEDLINE | ID: mdl-31191500

ABSTRACT

Klebsiella pneumoniae (K. pneumoniae) spp. are important nosocomial and community-acquired opportunistic pathogens, which cause various infections. We observed that K. pneumoniae strain K7 abruptly mutates to rough-type phage-resistant phenotype upon treatment with phage GH-K3. In the present study, the rough-type phage-resistant mutant named K7RR showed much lower virulence than K7. Liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis indicated that WcaJ and two undefined glycosyltransferases (GTs)- named GT-1, GT-2- were found to be down-regulated drastically in K7RR as compared to K7 strain. GT-1, GT-2, and wcaJ are all located in the gene cluster of capsular polysaccharide (CPS). Upon deletion, even of single component, of GT-1, GT-2, and wcaJ resulted clearly in significant decline of CPS synthesis with concomitant development of GH-K3 resistance and decline of virulence of K. pneumoniae, indicating that all these three GTs are more likely involved in maintenance of phage sensitivity and bacterial virulence. Additionally, K7RR and GT-deficient strains were found sensitive to endocytosis of macrophages. Mitogen-activated protein kinase (MAPK) signaling pathway of macrophages was significantly activated by K7RR and GT-deficient strains comparing with that of K7. Interestingly, in the presence of macromolecular CPS residues (>250 KD), K7(ΔGT-1) and K7(ΔwcaJ) could still be bounded by GH-K3, though with a modest adsorption efficiency, and showed minor virulence, suggesting that the CPS residues accumulated upon deletion of GT-1 or wcaJ did retain phage binding sites as well maintain mild virulence. In brief, our study defines, for the first time, the potential roles of GT-1, GT-2, and WcaJ in K. pneumoniae in bacterial virulence and generation of rough-type mutation under the pressure of bacteriophage.

9.
Viruses ; 11(2)2019 01 26.
Article in English | MEDLINE | ID: mdl-30691182

ABSTRACT

Aerococcus viridans is an opportunistic pathogen that is clinically associated with various human and animal diseases. In this study, the first identified A. viridans phage, vB_AviM_AVP (abbreviated as AVP), was isolated and studied. AVP belongs to the family Myoviridae. AVP harbors a double-stranded DNA genome with a length of 133,806 bp and a G + C content of 34.51%. The genome sequence of AVP showed low similarity (<1% identity) to those of other phages, bacteria, or other organisms in the database. Among 165 predicted open reading frames (ORFs), there were only 69 gene products exhibiting similarity (≤65% identity) to proteins of known functions in the database. In addition, the other 36 gene products did not match any viral or prokaryotic sequences in any publicly available database. On the basis of the putative functions of the ORFs, the genome of AVP was divided into three modules: nucleotide metabolism and replication, structural components, and lysis. A phylogenetic analysis of the terminase large subunits and capsid proteins indicated that AVP represents a novel branch of phages. The observed characteristics of AVP indicate that it represents a new class of phages.


Subject(s)
Aerococcus/virology , Genome, Viral , Myoviridae/genetics , Base Composition , Capsid Proteins/genetics , DNA, Viral/genetics , Myoviridae/isolation & purification , Open Reading Frames , Phylogeny , Sequence Analysis, DNA
10.
Vet Microbiol ; 229: 72-80, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30642601

ABSTRACT

Staphylococcus aureus is one of the most important pathogens causing rabbit necrotizing pneumonia and brings huge economic losses to rabbit production. This study investigated the preventive effect of a phage on rabbit necrotizing pneumonia caused by S. aureus. S. aureus S6 was isolated from the lungs of rabbits suffering necrotizing pneumonia and identified. A novel phage named VB-SavM-JYL01 was isolated by using S. aureus S6 as a host and showed a broader host range than the phages GH15 and K. The genome of VB-SavM-JYL01 lacked bacterial virulence-, antibiotic resistance- and lysogenesis-related genes. A single intranasal administration of VB-SavM-JYL01 (3 × 109 PFU) could effectively improve the survival rate at 48 h to 90% (9/10) compared with the survival rate of 10% and 80% observed with the PBS or linezolid treatment, respectively. The bacterial count in the lungs of rabbits treated with the phage VB-SavM-JYL01 was 4.18 × 104 CFU/g at 24 h, which was significantly decreased compared to that of rabbits treated with PBS (7.38 × 107 CFU/g) or linezolid (3.12 × 105 CFU/g). The phage treatment significantly alleviated lung tissue damage. The levels of total proteins, Panton-Valentine leukocidin (PVL), alpha-toxin (Hla) and cytokines in the lungs of the rabbits treated with the phage were significantly lower than those of the rabbits treated with PBS and similar to those of the rabbits treated with linezolid. These data demonstrate the potential utility of phage as an alternative for preventing rabbit necrotizing pneumonia caused by S. aureus.


Subject(s)
Pneumonia, Necrotizing/veterinary , Pneumonia, Staphylococcal/veterinary , Rabbits/microbiology , Staphylococcus Phages , Staphylococcus aureus/virology , Animals , Female , Pneumonia, Necrotizing/microbiology , Pneumonia, Necrotizing/prevention & control , Pneumonia, Staphylococcal/prevention & control
11.
J Mater Chem B ; 7(1): 43-52, 2019 01 07.
Article in English | MEDLINE | ID: mdl-32254949

ABSTRACT

Inspired by the delicate structure and prominent efficiency of natural multiple-enzyme systems, combining nanotechnologies such as nanomaterials, self-assemblies, and enzyme mimics is fascinating for the development of next-generation high-performance organized enzyme cascade bioplatforms. In our facile and convenient design, a dual-functionalized ß-casein-Pt nanoparticles@mesoporous-Fe3O4 (CM-PtNP@m-Fe3O4) hybrid acts as both a nanozyme with outstanding peroxidase-like activity and a scaffold to immobilize and stabilize a natural oxidase, resulting in a high-performance organized enzyme cascade bioplatform for a one-pot assembly procedure. Owing to special physicochemical surface properties, the multipoint attachment of various interactions between natural enzymes and protein/inorganic hybrids leads to efficient immobilization of the enzyme with retained activity. The proposed cascade bioplatform provides superior cholesterol sensing, including simplicity (one-step detection), reusable enzymes (peroxidase mimic and oxidase), and excellent sensitivity (detection limit, 0.05 µM). To our knowledge, the bioplatform presented in this work shows the highest sensitivity for cholesterol detection among all reported colorimetric methods based on nanozymes. Therefore, the highly rationally designed protein/inorganic hybrid and dual-functional strategy used in this study will provide a facile one-pot and effective high-performance organized enzyme cascade bioplatform with potential applications in biosensing, biotransformation, decontamination, and biofuel.


Subject(s)
Biosensing Techniques/methods , Colorimetry/methods , Nanoparticles/chemistry , Biocatalysis , Caseins/chemistry , Cholesterol/blood , Ferric Compounds/chemistry , Humans , Platinum/chemistry
12.
Appl Environ Microbiol ; 84(21)2018 11 01.
Article in English | MEDLINE | ID: mdl-30171001

ABSTRACT

Bacteriophage can be used as an alternative or complementary therapy to antibiotics for treating multidrug-resistant bacterial infections. However, the rapid emergence of resistant host variants during phage treatment has limited its therapeutic applications. In this study, a potential phage-resistant mechanism of Klebsiella pneumoniae was revealed. After phage GH-K3 treatment, a smooth-type colony, named K7RB, was obtained from the K. pneumoniae K7 culture. Treatment with IO4- and/or proteinase K indicated that polysaccharides of K7 played an important role in phage recruitment, and protein receptors on K7 were essential for effective infection by GH-K3. Differences in protein expression between K7 and K7RB were quantitatively analyzed by liquid chromatography-tandem mass spectrometry. Among differentially expressed proteins, OmpC, OmpN, KPN_02430, and OmpF were downregulated significantly in K7RBtrans-Complementation of OmpC in K7RB conferred rapid adsorption and sensitivity to GH-K3. In contrast, a single-base deletion mutation of ompC in K7, which resulted in OmpC silencing, led to lower adsorption efficiency and resistance to GH-K3. These assays proved that OmpC is the key receptor-binding protein for GH-K3. In addition, the native K. pneumoniae strains KPP14, KPP27, and KPP36 showed low or no sensitivity to GH-K3. However, these strains became more sensitive to GH-K3 after their native receptors were replaced by OmpC of K7, suggesting that OmpCK7 was the most suitable receptor for GH-K3. This study revealed that K7RB became resistant to GH-K3 due to gene mutation of ompC and that OmpC of K7 is essential for effective infection by GH-K3.IMPORTANCE With increased incidence of multidrug-resistant (MDR) bacterial strains, phages have regained attention as promising potential antibacterial agents. However, the rapid emergence of resistant variants during phage treatment has limited the therapeutic applications of phage. According to our trans-complementation, ompC mutation, and phage adsorption efficiency assays, we identified OmpC as the key receptor-binding protein (RBP) for phage GH-K3, which is essential for effective infection. This study revealed that the phage secondary receptor of K. pneumoniae, OmpC, is the essential RBP not only for phage infecting Gram-negative bacteria, such as Escherichia coli and Salmonella, but also for K. pneumoniae.


Subject(s)
Bacteriophages/physiology , Klebsiella pneumoniae/virology , Porins/metabolism , Receptors, Virus/metabolism , Amino Acid Sequence , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Mutation , Porins/genetics , Receptors, Virus/genetics , Virus Attachment
13.
Viruses ; 10(5)2018 05 06.
Article in English | MEDLINE | ID: mdl-29734776

ABSTRACT

Staphylococcus aureus (S. aureus) is a common and dangerous pathogen that causes various infectious diseases. Skin damage, such as burn wounds, are at high risk of Staphylococcus aureus colonization and infection, which increases morbidity and mortality. The phage lysin LysGH15 exhibits highly efficient lytic activity against methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains. Apigenin (api) significantly decreases haemolysis of rabbit erythrocytes caused by S. aureus and shows anti-inflammatory function. LysGH15 and api were added to Aquaphor to form an LysGH15-api-Aquaphor (LAA) ointment. The LAA ointment simultaneously exhibited bactericidal activity against S. aureus and inhibited haemolysis. In an LAA-treated mouse model of an MRSA-infected skin wound, the mean bacterial colony count decreased to approximately 10² CFU/mg at 18 h after treatment (and the bacteria became undetectable at 96 h), whereas the mean count in untreated mice was approximately 105 CFU/mg of tissue. The LAA ointment also reduced the levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IFN-γ) and accelerated wound healing in the mouse model. These data demonstrate the potential efficacy of a combination of LysGH15 and api for use as a topical antimicrobial agent against S. aureus.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Apigenin/therapeutic use , Mucoproteins/therapeutic use , Ointments/pharmacology , Staphylococcal Infections/drug therapy , Wounds and Injuries/drug therapy , Animals , Colony Count, Microbial , Cytokines/drug effects , Female , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Skin/microbiology , Skin/pathology , Staphylococcus Phages/chemistry , Wounds and Injuries/microbiology
14.
Appl Environ Microbiol ; 84(15)2018 08 01.
Article in English | MEDLINE | ID: mdl-29776929

ABSTRACT

Treatment of infections caused by staphylococci has become more difficult because of the emergence of multidrug-resistant strains as well as biofilm formation. In this study, we observed the ability of the phage lysin LysGH15 to eliminate staphylococcal planktonic cells and biofilms formed by Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis All these strains were sensitive to LysGH15, showing reductions in bacterial counts of approximately 4 log units within 30 min after treatment with 20 µg/ml of LysGH15, and the MICs ranged from 8 µg/ml to 32 µg/ml. LysGH15 efficiently prevented biofilm formation by the four staphylococcal species at a dose of 50 µg/ml. At a higher dose (100 µg/ml), LysGH15 also showed notable disrupting activity against 24-h and 72-h biofilms formed by S. aureus and coagulase-negative species. In the in vivo experiments, a single intraperitoneal injection of LysGH15 (20 µg/mouse) administered 1 h after the injection of S. epidermidis at double the minimum lethal dose was sufficient to protect the mice. The S. epidermidis cell counts were 4 log units lower in the blood and 3 log units lower in the organs of mice 24 h after treatment with LysGH15 than in the untreated control mice. LysGH15 reduced cytokine levels in the blood and improved pathological changes in the organs. The broad antistaphylococcal activity exerted by LysGH15 on planktonic cells and biofilms makes LysGH15 a valuable treatment option for biofilm-related or non-biofilm-related staphylococcal infections.IMPORTANCE Most staphylococcal species are major causes of health care- and community-associated infections. In particular, Staphylococcus aureus is a common and dangerous pathogen, and Staphylococcus epidermidis is a ubiquitous skin commensal and opportunistic pathogen. Treatment of infections caused by staphylococci has become more difficult because of the emergence of multidrug-resistant strains as well as biofilm formation. In this study, we found that all tested S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis strains were sensitive to the phage lysin LysGH15 (MICs ranging from 8 to 32 µg/ml). More importantly, LysGH15 not only prevented biofilm formation by these staphylococci but also disrupted 24-h and 72-h biofilms. Furthermore, the in vivo efficacy of LysGH15 was demonstrated in a mouse model of S. epidermidis bacteremia. Thus, LysGH15 exhibits therapeutic potential for treating biofilm-related or non-biofilm-related infections caused by diverse staphylococci.


Subject(s)
Biofilms , Phage Therapy , Plankton/physiology , Plankton/virology , Staphylococcal Infections/therapy , Staphylococcus Phages/physiology , Staphylococcus/physiology , Staphylococcus/virology , Animals , Bacteremia/microbiology , Bacteremia/therapy , Female , Humans , Mice , Mice, Inbred BALB C , Plankton/genetics , Plankton/growth & development , Staphylococcal Infections/microbiology , Staphylococcus/genetics , Staphylococcus/growth & development
16.
Immunol Res ; 65(6): 1124-1129, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28929313

ABSTRACT

Porcine contagious pleuropneumonia is a highly fatal respiratory disease that is caused by Actinobacillus pleuropneumoniae (APP) and results in tremendous economic losses for the pig breeding industry worldwide. Previous studies have demonstrated that Propionibacterium acnes (PA) could effectively prevent APP infection in mice and pigs. The humoral immune response played a primary role during this process and anti-PA antibody could mediate macrophages to kill the bacteria. However, the role of neutrophils in this process is currently unknown. In this study, mice were injected with cyclophosphamide to deplete neutrophils and then passively immunized with anti-PA serum or negative serum. Mice were subsequently challenged with APP serotype 1. The results showed that the mice exhibited less bacterial colonization, less lung damage, and a high survival rate, which were immunized with the anti-PA antibody whether neutrophils were depleted or not. Worse still, the presence of neutrophils increased the damage to the mice after challenge. These results suggest that the activity of the anti-PA antibody against APP infection was independent of neutrophils. These findings have important significance for understanding the mechanisms of humoral immunity conferred by heterologous immunization and lay a good foundation for preventing APP infection.


Subject(s)
Actinobacillus Infections/immunology , Actinobacillus pleuropneumoniae/immunology , Antibodies, Bacterial/metabolism , Lung/pathology , Neutrophils/immunology , Pleuropneumonia, Contagious/immunology , Propionibacterium acnes/physiology , Animals , Cyclophosphamide/administration & dosage , Female , Immunity, Heterologous , Immunity, Humoral , Immunization, Passive , Leukapheresis , Mice , Mice, Inbred BALB C , Swine
17.
Sci Rep ; 7(1): 10164, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860505

ABSTRACT

Phage-derived lysins can hydrolyse bacterial cell walls and show great potential for combating Gram-positive pathogens. In this study, the potential of LysEF-P10, a new lysin derived from a isolated Enterococcus faecalis phage EF-P10, as an alternative treatment for multidrug-resistant E. faecalis infections, was studied. LysEF-P10 shares only 61% amino acid identity with its closest homologues. Four proteins were expressed: LysEF-P10, the cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domain (LysEF-P10C), the putative binding domain (LysEF-P10B), and a fusion recombination protein (LysEF-P10B-green fluorescent protein). Only LysEF-P10 showed highly efficient, broad-spectrum bactericidal activity against E. faecalis. Several key functional residues, including the Cys-His-Asn triplet and the calcium-binding site, were confirmed using 3D structure prediction, BLAST and mutation analys. We also found that calcium can switch LysEF-P10 between its active and inactive states and that LysEF-P10B is responsible for binding E. faecalis cells. A single administration of LysEF-P10 (5 µg) was sufficient to protect mice against lethal vancomycin-resistant Enterococcus faecalis (VREF) infection, and LysEF-P10-specific antibody did not affect its bactericidal activity or treatment effect. Moreover, LysEF-P10 reduced the number of Enterococcus colonies and alleviated the gut microbiota imbalance caused by VREF. These results indicate that LysEF-P10 might be an alternative treatment for multidrug-resistant E. faecalis infections.


Subject(s)
Bacteriophages/genetics , Drug Resistance, Multiple, Bacterial/drug effects , Enterococcus faecalis/virology , Gram-Positive Bacterial Infections/prevention & control , N-Glycosyl Hydrolases/administration & dosage , N-Glycosyl Hydrolases/chemistry , Animals , Bacteriophages/enzymology , Bacteriophages/isolation & purification , Binding Sites , Disease Models, Animal , Enterococcus faecalis/drug effects , Female , Humans , Mice , Microbial Sensitivity Tests , Microbial Viability/drug effects , Models, Molecular , Mutation , N-Glycosyl Hydrolases/genetics , N-Glycosyl Hydrolases/pharmacology , Protein Conformation , Sequence Homology, Amino Acid , Viral Proteins/administration & dosage , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/pharmacology
18.
Front Microbiol ; 8: 837, 2017.
Article in English | MEDLINE | ID: mdl-28536572

ABSTRACT

Enterococcus faecalis is becoming an increasingly important opportunistic pathogen worldwide, especially because it can cause life-threatening nosocomial infections. Treating E. faecalis infections has become increasingly difficult because of the prevalence of multidrug-resistant E. faecalis strains. Because bacteriophages show specificity for their bacterial hosts, there has been a growth in interest in using phage therapies to combat the rising incidence of multidrug-resistant bacterial infections. In this study, we isolated a new lytic phage, EF-P29, which showed high efficiency and a broad host range against E. faecalis strains, including vancomycin-resistant strains. The EF-P29 genome contains 58,984 bp (39.97% G+C), including 101 open reading frames, and lacks known putative virulence factors, integration-related proteins or antibiotic resistance determinants. In murine experiments, the administration of a single intraperitoneal injection of EF-P29 (4 × 105 PFU) at 1 h after challenge was sufficient to protect all mice against bacteremia caused by infection with a vancomycin-resistant E. faecalis strain (2 × 109 CFU/mouse). E. faecalis colony counts were more quickly eliminated in the blood of EF-P29-protected mice than in unprotected mice. We also found that exogenous E. faecalis challenge resulted in enrichment of members of the genus Enterococcus (family Enterococcaceae) in the guts of the mice, suggesting that it can enter the gut and colonize there. The phage EF-P29 reduced the number of colonies of genus Enterococcus and alleviated the gut microbiota imbalance that was caused by E. faecalis challenge. These data indicate that the phage EF-P29 shows great potential as a therapeutic treatment for systemic VREF infection. Thus, phage therapies that are aimed at treating opportunistic pathogens are also feasible. The dose of phage should be controlled and used at the appropriate level to avoid causing imbalance in the gut microbiota.

19.
Sci Rep ; 6: 29344, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27385518

ABSTRACT

The lysin LysGH15, derived from the staphylococcal phage GH15, exhibits a wide lytic spectrum and highly efficient lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). Here, we found that LysGH15 did not induce resistance in MRSA or methicillin-sensitive S. aureus (MSSA) strains after repeated treatment. Although LysGH15 triggered the generation of LysGH15-specific antibodies in mice, these antibodies did not block lytic activity in vitro (nor the binding capacity of LysGH15). More importantly, when the antibody titre was highest in mice immunized with LysGH15, a single intravenous injection of LysGH15 was sufficient to protect mice against lethal infection with MRSA. These results indicated that LysGH15-specific antibodies did not affect the killing efficiency of LysGH15 against MRSA in vitro or in vivo. LysGH15 also reduced pro-inflammatory cytokines in mice with lethal infections. Furthermore, a high-dose LysGH15 injection did not cause significant adverse effects or pathological changes in the main organs of treated animals. These results provide further evidence for the administration of LysGH15 as an alternative strategy for the treatment of infections caused by MRSA.


Subject(s)
Anti-Bacterial Agents/pharmacology , Immunity, Humoral/drug effects , Inflammation/chemically induced , Methicillin-Resistant Staphylococcus aureus/drug effects , Mucoproteins/pharmacology , Animals , Female , Mice , Mice, Inbred BALB C , Staphylococcal Infections/drug therapy , Staphylococcus Phages/drug effects
20.
Virology ; 492: 11-20, 2016 May.
Article in English | MEDLINE | ID: mdl-26896930

ABSTRACT

Due to the worldwide prevalence of antibiotic resistant strains, phages therapy has been revitalized recently. In this study, an Enterococcus faecium phage named IME-EFm5 was isolated from hospital sewage. Whole genomic sequence analysis demonstrated that IME-EFm5 belong to the Siphoviridae family, and has a double-stranded genome of 42,265bp (with a 35.51% G+C content) which contains 70 putative coding sequences. LysEFm5, the endolysin of IME-EFm5, contains an amidase domain in its N-terminal and has a wider bactericidal spectrum than its parental phage IME-EFm5, including 7 strains of vancomycin-resistant E. faecium. The mutagenesis analysis revealed that the zinc ion binding residues (H27, H132, and C140), E90, and T138 are required for the catalysis of LysEFm5. However, the antibacterial activity of LysEFm5 is zinc ion independent, which is inconsistent with most of other amidase members. The phage lysin LysEFm5 might be an alternative treatment strategy for infections caused by multidrug-resistant E. faecium.


Subject(s)
Amidohydrolases/chemistry , Bacteriophages/genetics , Endopeptidases/chemistry , Enterococcus faecium/virology , Genome, Viral , Siphoviridae/genetics , Viral Proteins/chemistry , Amidohydrolases/genetics , Amidohydrolases/metabolism , Amino Acid Sequence , Bacteriophages/enzymology , DNA, Viral/genetics , DNA, Viral/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Enterococcus faecium/isolation & purification , Gene Expression , Genome Size , Gram-Positive Bacterial Infections/microbiology , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment , Sewage/virology , Siphoviridae/enzymology , Vancomycin Resistance/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL