Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 4264, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383553

ABSTRACT

Photoacoustic imaging is a promising technology for in vivo imaging. However, its imaging performance can be hampered by motion artifacts, especially when dealing with high-rate motion. In this paper, we propose an orthogonal motion correction method that utilizes cross-correlation along orthogonal scan directions to extract accurate motion displacements from the photoacoustic data. The extracted displacements are then applied to remove artifacts and compensate for motion-induced distortions. Phantom experiments demonstrate that the proposed method can extract the motion information and the structural similarity index measurement after correction is increased by 26.5% and 11.2% compared to no correction and the previous correction method. Then the effectiveness of our method is evaluated in vivo imaging of a mouse brain. Our method shows a stable and effective performance under high-rate motion. The high accuracy of the motion correction method makes it valuable in improving the accuracy of photoacoustic imaging.

2.
Anal Methods ; 15(36): 4656-4662, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37667675

ABSTRACT

To monitor Cu2+ efficiently, a kind of D-π-A-π-D conjugated 3,5-di-(2-hydroxyl naphthaldehyde)-iminyl triazole (HNIT) was developed, using triazole as the electron acceptor, 2-hydroxyl naphthaline as the electron donor, and -CN- as the bridging group. The proposed HNIT possessed superior UV-vis and fluorescent spectral property with high molar absorption coefficient of 2.313 × 104 L mol-1 cm-1 and fluorescence quantum yield of 36.2%. Trace Cu2+ could exclusively alter its UV-vis and fluorescent property with clear color change. Under the optimized conditions, a high-performance fluorescent and ratiometric colorimetric detection of Cu2+ based on HNIT was efficient, with low detection limits of 3.3 × 10-8 mol L-1 (S/N = 3) and 9.6 × 10-8 mol L-1 (S/N = 3), respectively. It well satisfied with the safe value of 31.5 µM Cu2+ in drinking water recommended by World Health Organization (WHO). When applied for detection of Cu2+ in real environmental samples, the recovery was in the range of 97.5-105.2%. The recognition mechanism for HNIT to Cu2+ realized quite stable 6-membered rings between electron-deficient Cu2+ and electron-rich N and O atoms in HNIT with 1 : 2 chemical stoichiometry of HNIT to Cu2+.

3.
Sci Rep ; 6: 21798, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26902394

ABSTRACT

Dental hard tissue lesions, including caries, cracked-tooth, etc., are the most prevalent diseases of people worldwide. Dental lesions and correlative diseases greatly decrease the life quality of patients throughout their lifetime. It is still hard to noninvasively detect these dental lesions in their early stages. Photoacoustic imaging is an emerging hybrid technology combining the high spatial resolution of ultrasound in deep tissue with the rich optical contrasts. In this study, a dual-contrast photoacoustic tomography is applied to detect the early dental lesions. One contrast, named B-mode, is related to the optical absorption. It is good at providing the sharp image about the morphological and macro-structural features of the teeth. Another contrast, named S-mode, is associated with the micro-structural and mechanical properties of the hard tissue. It is sensitive to the change of tissue properties induced by the early dental lesions. Experiments show that the comprehensive analysis of dual-contrast information can provide reliable information of the early dental lesions. Moreover, the imaging parameter of S-mode is device-independent and it could measure tissue properties quantitatively. We expect that the proposed scheme could be beneficial for improving safety, accuracy and sensitivity of the clinical diagnosis of the dental lesion.


Subject(s)
Dental Caries/diagnostic imaging , Photoacoustic Techniques/methods , Tomography, Optical Coherence/methods , Tooth Fractures/diagnostic imaging , Dental Caries/pathology , Dental Caries/surgery , Humans , Image Interpretation, Computer-Assisted , Photoacoustic Techniques/instrumentation , Tomography, Optical Coherence/instrumentation , Tooth/pathology , Tooth/surgery , Tooth Extraction , Tooth Fractures/pathology , Tooth Fractures/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...