Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Crit Rev Oncog ; 28(1): 27-45, 2023.
Article in English | MEDLINE | ID: mdl-37824385

ABSTRACT

Nitric oxide (NO) and the enzyme that synthesizes it, nitric oxide synthase 2 (NOS2), have emerged as key players in inflammation and cancer. Expression of NOS2 in tumors has been correlated both with positive outcomes and with poor prognoses. The chemistry of NO is the major determinate to the biological outcome and the concentration of NO, which can range over five orders of magnitude, is critical in determining which pathways are activated. It is the activation of specific oncogenic and immunological mechanisms that shape the outcome. The kinetics of specific reactions determine the mechanisms of action. In this review, the relevant reactions of NO and related species are discussed with respect to these oncogenic and immunological signals.


Subject(s)
Neoplasms , Nitric Oxide Synthase Type II , Nitric Oxide , Humans , Neoplasms/genetics , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Signal Transduction
2.
Cell Death Dis ; 14(5): 319, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169743

ABSTRACT

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER breast cancer has been established. However, the mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single-cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1ß or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγ presents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8+ T cells were spatially analyzed in aggressive ER-, TNBC, and HER2 + breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8+ T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8+ T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis, suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ + IL1ß/TNFα increased the elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight into distinct neighborhoods where stroma-restricted CD8+ T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.


Subject(s)
Interferon-gamma , Triple Negative Breast Neoplasms , Tumor Microenvironment , Female , Humans , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Tumor Necrosis Factor-alpha/metabolism
3.
Biomolecules ; 13(2)2023 02 07.
Article in English | MEDLINE | ID: mdl-36830680

ABSTRACT

The small endogenous signaling molecule nitric oxide (NO) has been linked with chronic inflammation and cancer. The effects of NO are both concentration and temporally dependent; under some conditions, NO protects against damage caused by reactive oxygen species and activates P53 signaling. During chronic inflammation, NO causes DNA damage and inhibits repair proteins. To extend our understanding of the roles of NO during carcinogenesis, we investigated the possible effects of chronic NO exposure on MCF10A breast epithelial cells, as defined by changes in cellular morphology, chromosome/genomic stability, RNA, and protein expression, and altered cell phenotypes. Human MCF10A cells were maintained in varying doses of the NO donor DETANO for three weeks. Distinct patterns of genomic modifications in TP53 and KRAS target genes were detected in NO-treated cells when compared to background mutations. In addition, quantitative real-time PCR demonstrated an increase in the expression of cancer stem cell (CSC) marker CD44 after prolonged exposure to 300 µM DETANO. While similar changes in cell morphology were found in cells exposed to 300-500 µM DETANO, cells cultured in 100 µM DETANO exhibited enhanced motility. In addition, 100 µM NO-treated cells proliferated in serum-free media and selected clonal populations and pooled cells formed colonies in soft agar that were clustered and disorganized. These findings show that chronic exposure to NO generates altered breast epithelial cell phenotypes with malignant characteristics.


Subject(s)
Breast Neoplasms , Nitric Oxide , Humans , Female , Nitric Oxide/metabolism , Tumor Suppressor Protein p53/metabolism , Epithelial Cells/metabolism , Mutation , Inflammation/metabolism , Breast Neoplasms/metabolism
4.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187660

ABSTRACT

Multiple immunosuppressive mechanisms exist in the tumor microenvironment that drive poor outcomes and decrease treatment efficacy. The co-expression of NOS2 and COX2 is a strong predictor of poor prognosis in ER- breast cancer and other malignancies. Together, they generate pro-oncogenic signals that drive metastasis, drug resistance, cancer stemness, and immune suppression. Using an ER- breast cancer patient cohort, we found that the spatial expression patterns of NOS2 and COX2 with CD3+CD8+PD1- T effector (Teff) cells formed a tumor immune landscape that correlated with poor outcome. NOS2 was primarily associated with the tumor-immune interface, whereas COX2 was associated with immune desert regions of the tumor lacking Teff cells. A higher ratio of NOS2 or COX2 to Teff was highly correlated with poor outcomes. Spatial analysis revealed that regional clustering of NOS2 and COX2 was associated with stromal-restricted Teff, while only COX2 was predominant in immune deserts. Examination of other immunosuppressive elements, such as PDL1/PD1, Treg, B7H4, and IDO1, revealed that PDL1/PD1, Treg, and IDO1 were primarily associated with restricted Teff, whereas B7H4 and COX2 were found in tumor immune deserts. Regardless of the survival outcome, other leukocytes, such as CD4 T cells and macrophages, were primarily in stromal lymphoid aggregates. Finally, in a 4T1 model, COX2 inhibition led to a massive cell infiltration, thus validating the hypothesis that COX2 is an essential component of the Teff exclusion process and, thus, tumor evasion. Our study indicates that NOS2/COX2 expression plays a central role in tumor immunosuppression. Our findings indicate that new strategies combining clinically available NOS2/COX2 inhibitors with various forms of immune therapy may open a new avenue for the treatment of aggressive ER-breast cancers.

5.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209132

ABSTRACT

The metabolic requirements and functions of cancer and normal tissues are vastly different. Due to the rapid growth of cancer cells in the tumor microenvironment, distorted vasculature is commonly observed, which creates harsh environments that require rigorous and constantly evolving cellular adaption. A common hallmark of aggressive and therapeutically resistant tumors is hypoxia and hypoxia-induced stress markers. However, recent studies have identified alterations in a wide spectrum of metabolic pathways that dictate tumor behavior and response to therapy. Accordingly, it is becoming clear that metabolic processes are not uniform throughout the tumor microenvironment. Metabolic processes differ and are cell type specific where various factors promote metabolic heterogeneity within the tumor microenvironment. Furthermore, within the tumor, these metabolically distinct cell types can organize to form cellular neighborhoods that serve to establish a pro-tumor milieu in which distant and spatially distinct cellular neighborhoods can communicate via signaling metabolites from stroma, immune and tumor cells. In this review, we will discuss how biochemical interactions of various metabolic pathways influence cancer and immune microenvironments, as well as associated mechanisms that lead to good or poor clinical outcomes.


Subject(s)
Neoplasms/immunology , Nitric Oxide/immunology , Signal Transduction/immunology , Tumor Microenvironment/immunology , Animals , Humans , Neoplasms/pathology
6.
J Vis Exp ; (157)2020 03 20.
Article in English | MEDLINE | ID: mdl-32250353

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited therapeutic options. When compared to patients with less aggressive breast tumors, the 5-year survival rate of TNBC patients is 77% due to their characteristic drug-resistant phenotype and metastatic burden. Toward this end, murine models have been established aimed at identifying novel therapeutic strategies limiting TNBC tumor growth and metastatic spread. This work describes a practical guide for the TNBC orthotopic model where MDA-MB-231 breast cancer cells suspended in a basement membrane matrix are implanted in the fourth mammary fat pad, which closely mimics the cancer cell behavior in humans. Measurement of tumors by caliper, lung metastasis assessment via in vivo and ex vivo imaging, and molecular detection are discussed. This model provides an excellent platform to study therapeutic efficacy and is especially suitable for the study of the interaction between the primary tumor and distal metastatic sites.


Subject(s)
Triple Negative Breast Neoplasms/pathology , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Humans , Lung Neoplasms/secondary , Mice , Phenotype , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Xenograft Model Antitumor Assays
7.
Redox Biol ; 28: 101354, 2020 01.
Article in English | MEDLINE | ID: mdl-31683257

ABSTRACT

The role of nitric oxide (NO) in cancer progression has largely been studied in the context of tumor NOS2 expression. However, pro- versus anti-tumor signaling is also affected by tumor cell-macrophage interactions. While these cell-cell interactions are partly regulated by NO, the functional effects of NO flux on proinflammatory (M1) macrophages are unknown. Using a triple negative murine breast cancer model, we explored the potential role of macrophage Nos2 on 4T1 tumor progression. The effects of NO on macrophage phenotype were examined in bone marrow derived macrophages from wild type and Nos2-/- mice following in vitro stimulation with cytokine/LPS combinations to produce low, medium, and high NO flux. Remarkably, Nos2 induction was spatially distinct, where Nos2high cells expressed low cyclooxygenase-2 (Cox2) and vice versa. Importantly, in vitro M1 polarization with IFNγ+LPS induced high NO flux that was restricted to cells harboring depolarized mitochondria. This flux altered the magnitude and spatial extent of hypoxic gradients. Metabolic and single cell analyses demonstrated that single cell Nos2 induction limited the generation of hypoxic gradients in vitro, and Nos2-dependent and independent features may collaborate to regulate M1 functionality. It was found that Cox2 expression was important for Nos2high cells to maintain NO tolerance. Furthermore, Nos2 and Cox2 expression in 4T1 mouse tumors was spatially orthogonal forming distinct cellular neighborhoods. In summary, the location and type of Nos2high cells, NO flux, and the inflammatory status of other cells, such as Cox2high cells in the tumor niche contribute to Nos2 inflammatory mechanisms that promote disease progression of 4T1 tumors.


Subject(s)
Cytokines/metabolism , Lipopolysaccharides/adverse effects , Nitric Oxide Synthase Type II/genetics , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Disease Progression , Female , Gene Expression Regulation, Neoplastic/drug effects , Macrophages/drug effects , Macrophages/immunology , Mice , Neoplasm Transplantation , Nitric Oxide/metabolism , Single-Cell Analysis , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
8.
Redox Biol ; 22: 101158, 2019 04.
Article in English | MEDLINE | ID: mdl-30852389

ABSTRACT

Pancreatic cancer is a highly metastatic tumor with an extremely low 5-year survival rate. Lack of efficient diagnostics and dearth of effective therapeutics that can target the cancer as well as the microenvironment niche are the reasons for limited success in treatment and management of this disease. Cell invasion through extracellular matrix (ECM) involves the complex regulation of adhesion to and detachment from ECM and its understanding is critical to metastatic potential of pancreatic cancer. To understand the characteristics of these cancer cells and their ability to metastasize, we compared human pancreatic cancer cell line, PANC-1 and its invading phenotype (INV) collected from transwell inserts. The invasive cell type, INV, exhibited higher resistance to Carbon-ion radiation compared to whole cultured (normally dish-cultured) PANC-1 (WCC), and had more efficient in vitro spheroid formation capability. Invasiveness of INV was hampered by nitric oxide synthase (NOS) inhibitors, suggesting that nitric oxide (NO) plays a cardinal role in PANC-1 invasion. In addition, in vitro studies indicated that a MEK-ERK-dependent, JAK independent mechanism through which NOS/NO modulate PANC-1 invasiveness. Suspended INV showed enhanced NO production as well as induction of several pro-metastatic, and stemness-related genes. NOS inhibitor, l-NAME, reduced the expression of these pro-metastatic or stemness-related genes, and dampened spheroid formation ability, suggesting that NO can potentially influence pancreatic cancer aggressiveness. Furthermore, xenograft studies with INV and WCC in NSG mouse model revealed a greater ability of INV compared to WCC, to metastasize to the liver and l-NAME diminished the metastatic lesions in mice injected with INV. Overall, data suggest that NO is a key player associated with resistance to radiation and metastasis of pancreatic cancer; and inhibition of NOS demonstrates therapeutic potential as observed in the animal model by specifically targeting the metastatic cells that harbor stem-like features and are potentially responsible for relapse.


Subject(s)
Nitric Oxide/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phenotype , Animals , Cell Line, Tumor , Disease Models, Animal , Fluorescent Antibody Technique , Humans , MAP Kinase Signaling System , Male , Mice , Neoplasm Invasiveness , Neoplastic Stem Cells/metabolism , Nitric Oxide Synthase/metabolism
9.
Antioxid Redox Signal ; 30(8): 1124-1143, 2019 03 10.
Article in English | MEDLINE | ID: mdl-29634348

ABSTRACT

SIGNIFICANCE: Cancer is a complex disease, which not only involves the tumor but its microenvironment comprising different immune cells as well. Nitric oxide (NO) plays specific roles within tumor cells and the microenvironment and determines the rate of cancer progression, therapy efficacy, and patient prognosis. Recent Advances: Key understanding of the processes leading to dysregulated NO flux within the tumor microenvironment over the past decade has provided better understanding of the dichotomous role of NO in cancer and its importance in shaping the immune landscape. It is becoming increasingly evident that nitric oxide synthase 2 (NOS2)-mediated NO/reactive nitrogen oxide species (RNS) are heavily involved in cancer progression and metastasis in different types of tumor. More recent studies have found that NO from NOS2+ macrophages is required for cancer immunotherapy to be effective. CRITICAL ISSUES: NO/RNS, unlike other molecules, are unique in their ability to target a plethora of oncogenic pathways during cancer progression. In this review, we subcategorize the different levels of NO produced by cells and shed light on the context-dependent temporal effects on cancer signaling and metabolic shift in the tumor microenvironment. FUTURE DIRECTIONS: Understanding the source of NO and its spaciotemporal profile within the tumor microenvironment could help improve efficacy of cancer immunotherapies by improving tumor infiltration of immune cells for better tumor clearance.


Subject(s)
Neoplasms/metabolism , Nitric Oxide/metabolism , Reactive Nitrogen Species/metabolism , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Nitric Oxide Synthase Type II/metabolism , Prognosis , Signal Transduction , Tumor Microenvironment
10.
Br J Pharmacol ; 176(2): 155-176, 2019 01.
Article in English | MEDLINE | ID: mdl-30152521

ABSTRACT

Recent findings suggest that co-expression of NOS2 and COX2 is a strong prognostic indicator in triple-negative breast cancer patients. These two key inflammation-associated enzymes are responsible for the biosynthesis of NO and PGE2 , respectively, and can exert their effect in both an autocrine and paracrine manner. Impairment of their physiological regulation leads to critical changes in both intra-tumoural and intercellular communication with the immune system and their adaptation to the hypoxic tumour micro-environment. Recent studies have also established a key role of NOS2-COX2 in causing metabolic shift. This review provides an extensive overview of the role of NO and PGE2 in shaping communication between the tumour micro-environment composed of tumour and immune cells that in turn favours tumour progression and metastasis. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.


Subject(s)
Cyclooxygenase 2/metabolism , Nitric Oxide Synthase Type II/metabolism , Animals , Humans , Nitric Oxide/metabolism , Tumor Microenvironment
11.
Proc Natl Acad Sci U S A ; 114(49): 13030-13035, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29087320

ABSTRACT

Proinflammatory signaling pathways are commonly up-regulated in breast cancer. In estrogen receptor-negative (ER-) and triple-negative breast cancer (TNBC), nitric oxide synthase-2 (NOS2) and cyclooxygenase-2 (COX2) have been described as independent predictors of disease outcome. We further explore these findings by investigating the impact of their coexpression on breast cancer survival. Elevated coexpression of NOS2/COX2 proteins is a strong predictor of poor survival among ER- patients (hazard ratio: 21). Furthermore, we found that the key products of NOS2 and COX2, NO and prostaglandin E2 (PGE2), respectively, promote feed-forward NOS2/COX2 crosstalk in both MDA-MB-468 (basal-like) and MDA-MB-231 (mesenchymal-like) TNBC cell lines in which NO induced COX2 and PGE2 induced NOS2 proteins. COX2 induction by NO involved TRAF2 activation that occurred in a TNFα-dependent manner in MDA-MB-468 cells. In contrast, NO-mediated TRAF2 activation in the more aggressive MDA-MB-231 cells was TNFα independent but involved the endoplasmic reticulum stress response. Inhibition of NOS2 and COX2 using amino-guanidine and aspirin/indomethacin yielded an additive reduction in the growth of MDA-MB-231 tumor xenografts. These findings support a role of NOS2/COX2 crosstalk during disease progression of aggressive cancer phenotypes and offer insight into therapeutic applications for better survival of patients with ER- and TNBC disease.


Subject(s)
Breast Neoplasms/genetics , Cyclooxygenase 2/genetics , Gene Expression Regulation, Neoplastic , Nitric Oxide Synthase Type II/genetics , Receptors, Estrogen/genetics , Triple Negative Breast Neoplasms/genetics , Animals , Aspirin/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Endoplasmic Reticulum Stress/drug effects , Feedback, Physiological , Female , Guanidines/pharmacology , Humans , Indomethacin/pharmacology , Mice , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Prognosis , Proportional Hazards Models , Receptors, Estrogen/deficiency , Signal Transduction , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/pathology , Tumor Burden/drug effects , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Xenograft Model Antitumor Assays
12.
J Cell Biochem ; 118(2): 237-251, 2017 02.
Article in English | MEDLINE | ID: mdl-27302072

ABSTRACT

Mammalian NUMB is alternatively spliced generating four isoforms NUMB1-NUMB4 that can function as tumor suppressors. NUMB1-NUMB4 proteins, which normally determine how different cell types develop, are reduced in 21% of primary breast tumors. Our previous work has, however, indicated that two novel NUMB isoforms, NUMB5 and NUMB6 have the pro-oncogenic functions. Herein, we address a novel function of human NUMB isoform 6 (NUMB6) in promoting cancer cell migration and invasion. We found that NUMB6 induced expression of embryonic transcription factor Slug, which in turn actively repressed E-cadherin, prompting cells to undergo epithelial-mesenchymal transition (EMT). Low-metastatic breast cancer cells DB-7 stably expressing NUMB6, lost their epithelial phenotype, exhibited migratory and pro-invasive behavior, and ultimately elevated expression of mesenchymal markers. Among these markers, increased vimentin, ß-catenin, and fibronectin expression elicited metalloproteinase 9 (MMP9) production. Our results revealed that NUMB6-DB-7 cells have significantly increased level of Akt1 and Akt2 phosphorylation. Therefore, antagonizing Akt signaling using a chemical inhibitor LY294002, we found that NUMB6-induced Slug expression was reduced, and ultimately accompanied with decreased cell migration and invasion. In summary, this study identified a novel molecular determinant of breast cancer progression, uncovering a potential oncogenic role for the NUMB6 protein in cancer cell migration and invasion, coupled to the maintenance of mesenchymal-like cells. J. Cell. Biochem. 118: 237-251, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Breast Neoplasms/metabolism , Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Nerve Tissue Proteins/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Membrane Proteins/genetics , Neoplasm Invasiveness , Neoplastic Stem Cells/pathology , Nerve Tissue Proteins/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism
13.
Antioxid Redox Signal ; 26(18): 1059-1077, 2017 06 20.
Article in English | MEDLINE | ID: mdl-27494631

ABSTRACT

SIGNIFICANCE: Gastrointestinal (GI) cancer taken together constitutes one of the most common cancers worldwide with a broad range of etiological mechanisms. In this review, we have examined the impact of nitric oxide (NO) on the etiology of colon, colorectal, gastric, esophageal, and liver cancers. Recent Advances: Despite differences in etiology, initiation, and progression, chronic inflammation has been shown to be a common element within these cancers showing interactions of numerous pathways. NO generated at the inflammatory site contributes to the initiation and progression of disease. The amount of NO generated, time, and site vary and are an important determinant of the biological effects initiated. Among the nitric oxide synthase enzymes, the inducible isoform has the most diverse range, participating in numerous carcinogenic processes. There is emerging evidence showing that inducible nitric oxide synthase (NOS2) plays a central role in the process of tumor initiation and/or development. CRITICAL ISSUES: Redox inflammation through NOS2 and cyclooxygenase-2 participates in driving the mechanisms of initiation and progression in GI cancers. FUTURE DIRECTIONS: Understanding the underlying mechanism involved in NOS2 activation can provide new insights into important prevention and treatment strategies. Antioxid. Redox Signal. 26, 1059-1077.


Subject(s)
Cyclooxygenase 2/metabolism , Gastrointestinal Neoplasms/enzymology , Inflammation/enzymology , Nitric Oxide Synthase Type II/metabolism , Animals , Carcinogenesis/metabolism , Disease Progression , Gastrointestinal Neoplasms/etiology , Humans , Inflammation/etiology , Nitric Oxide/immunology , Oxidation-Reduction
14.
Cancer Res ; 75(14): 2788-99, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25990221

ABSTRACT

Nitric oxide synthases (NOS) are important mediators of progrowth signaling in tumor cells, as they regulate angiogenesis, immune response, and immune-mediated wound healing. Ionizing radiation (IR) is also an immune modulator and inducer of wound response. We hypothesized that radiation therapeutic efficacy could be improved by targeting NOS following tumor irradiation. Herein, we show enhanced radiation-induced (10 Gy) tumor growth delay in a syngeneic model (C3H) but not immunosuppressed (Nu/Nu) squamous cell carcinoma tumor-bearing mice treated post-IR with the constitutive NOS inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME). These results suggest a requirement of T cells for improved radiation tumor response. In support of this observation, tumor irradiation induced a rapid increase in the immunosuppressive Th2 cytokine IL10, which was abated by post-IR administration of L-NAME. In vivo suppression of IL10 using an antisense IL10 morpholino also extended the tumor growth delay induced by radiation in a manner similar to L-NAME. Further examination of this mechanism in cultured Jurkat T cells revealed L-NAME suppression of IR-induced IL10 expression, which reaccumulated in the presence of exogenous NO donor. In addition to L-NAME, the guanylyl cyclase inhibitors ODQ and thrombospondin-1 also abated IR-induced IL10 expression in Jurkat T cells and ANA-1 macrophages, which further suggests that the immunosuppressive effects involve eNOS. Moreover, cytotoxic Th1 cytokines, including IL2, IL12p40, and IFNγ, as well as activated CD8(+) T cells were elevated in tumors receiving post-IR L-NAME. Together, these results suggest that post-IR NOS inhibition improves radiation tumor response via Th1 immune polarization within the tumor microenvironment.


Subject(s)
Chemotaxis, Leukocyte/drug effects , Enzyme Inhibitors/pharmacology , Lymphocyte Activation/drug effects , Neoplasms/pathology , Nitric Oxide Synthase/antagonists & inhibitors , Radiation Tolerance/drug effects , Radiation-Sensitizing Agents/pharmacology , Animals , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Enzyme Inhibitors/therapeutic use , Female , Humans , Jurkat Cells , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Neoplasms/drug therapy , Neoplasms/radiotherapy
15.
Nitric Oxide ; 43: 17-28, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25153034

ABSTRACT

Nitric oxide (NO) synthase 2 (NOS2), a major inflammatory protein, modulates disease progression via NO in a number of pathologies, including cancer. The role of NOS2-derived NO is not only flux-dependent, which is higher in mouse vs human cells, but also varies based on spatial and temporal distribution both within tumor cells and in the tumor microenvironment. NO donors have been utilized to mimic NO flux conditions and to investigate the effects of varied NO concentrations. As a wide range of effects mediated by NO and other nitrogen oxides such as nitroxyl (HNO) have been elucidated, multiple NO- and HNO-releasing compounds have been developed as potential therapeutics, including as tumor modulators. One of the challenges is to determine differences in biomarker expression from extracellular vs intracellular generation of NO or HNO. Taking advantage of new NO and HNO releasing agents, we have characterized the gene expression profile of estrogen receptor-negative human breast cancer (MDA-MB-231) cells following exposure to aspirin, the NO donor DEA/NO, the HNO donor IPA/NO andtheir intracellularly-activated prodrug conjugates DEA/NO-aspirin and IPA/NO-aspirin. Comparison of the gene expression profiles demonstrated that several genes were uniquely expressed with respect to NO or HNO, such as miR-21, HSP70, cystathionine γ-lyase and IL24. These findings provide insight into targets and pathways that could be therapeutically exploited by the redox related species NO and HNO.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Nitric Oxide Donors/pharmacology , Nitric Oxide/pharmacology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Profiling , Humans , Mice , Nitric Oxide Synthase/metabolism , Signal Transduction
16.
Proc Natl Acad Sci U S A ; 111(17): 6323-8, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24733928

ABSTRACT

Inflammation is widely recognized as an inducer of cancer progression. The inflammation-associated enzyme, inducible nitric oxide synthase (NOS2), has emerged as a candidate oncogene in estrogen receptor (ER)-negative breast cancer, and its increased expression is associated with disease aggressiveness and poor survival. Although these observations implicate NOS2 as an attractive therapeutic target, the mechanisms of both NOS2 induction in tumors and nitric oxide (NO)-driven cancer progression are not fully understood. To enhance our mechanistic understanding of NOS2 induction in tumors and its role in tumor biology, we used stimulants of NOS2 expression in ER(-) and ER(+) breast cancer cells and examined downstream NO-dependent effects. Herein, we show that up-regulation of NOS2 occurs in response to hypoxia, serum withdrawal, IFN-γ, and exogenous NO, consistent with a feed-forward regulation of NO production by the tumor microenvironment in breast cancer biology. Moreover, we found that key indicators of an aggressive cancer phenotype including increased S100 calcium binding protein A8, IL-6, IL-8, and tissue inhibitor matrix metalloproteinase-1 are up-regulated by these NOS2 stimulants, whereas inhibition of NOS2 in MDA-MB-231 breast cancer cells suppressed these markers. Moreover, NO altered cellular migration and chemoresistance of MDA-MB-231 cells to Taxol. Most notably, MDA-MB-231 tumor xenographs and cell metastases from the fat pad to the brain were significantly suppressed by NOS2 inhibition in nude mice. In summary, these results link elevated NOS2 to signals from the tumor microenvironment that arise with cancer progression and show that NO production regulates chemoresistance and metastasis of breast cancer cells.


Subject(s)
Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Disease Progression , Feedback, Physiological , Nitric Oxide Synthase Type II/metabolism , Tumor Microenvironment , Animals , Biomarkers, Tumor/metabolism , Cell Hypoxia/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Culture Media, Serum-Free , Drug Resistance, Neoplasm/drug effects , Feedback, Physiological/drug effects , Female , Guanidines , Humans , Interferon-gamma/pharmacology , Mice , Models, Biological , Neoplasm Metastasis , Nitric Oxide/pharmacology , Signal Transduction/drug effects , Tumor Microenvironment/drug effects
17.
Clin Cancer Res ; 19(6): 1340-6, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23271799

ABSTRACT

Numerous reports have described Toll-like receptor (TLR) expression in the tumor microenvironment as it relates to cancer progression, as well as their involvement in inflammation. While TLRs mediate immune surveillance, clinical studies have associated TLR expression in the tumor with poor patient survival, indicating that TLR expression may affect cancer treatment and survival. This review will examine mechanisms in which TLR activation upregulates protumorigenic pathways, including the induction of inducible nitric oxide synthase (iNOS2) and COX2, which in turn increase TLR expression and promote a feed-forward loop leading to tumor progression and the development of more aggressive tumor phenotypes. These propagating loops involve cancer cell, stroma, and/or immune cell TLR expression. Because of abundant TLR expression in many human tumors, several TLR agonists are now in clinical and preclinical trials and some have shown enhanced efficacy when used as adjuvant with radiation, chemotherapy, or cancer vaccines. These findings suggest that TLR expression influences cancer biology and therapeutic response, which may involve specific interactions within the tumor microenvironment, including mediators of inflammation such as nitric oxide and the arachidonic acid signaling pathways.


Subject(s)
Cyclooxygenase 2/genetics , Neoplasms/genetics , Nitric Oxide Synthase Type II/genetics , Toll-Like Receptors/genetics , Arachidonic Acid/genetics , Arachidonic Acid/metabolism , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Nitric Oxide/genetics , Nitric Oxide/metabolism , Prognosis , Signal Transduction , Tumor Microenvironment/genetics
18.
J Neurochem ; 123(5): 736-49, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23016931

ABSTRACT

Fibrillar amyloid plaques are largely composed of amyloid-beta (Aß) peptides that are metabolized into products, including Aß1-16, by proteases including matrix metalloproteinase 9 (MMP-9). The balance between production and degradation of Aß proteins is critical to amyloid accumulation and resulting disease. Regulation of MMP-9 and its endogenous inhibitor tissue inhibitor of metalloproteinase (TIMP)-1 by nitric oxide (NO) has been shown. We hypothesize that nitric oxide synthase (NOS2) protects against Alzheimer's disease pathology by increasing amyloid clearance through NO regulation of MMP-9/TIMP-1 balance. We show NO-mediated increased MMP-9/TIMP-1 ratios enhanced the degradation of fibrillar Aß in vitro, which was abolished when silenced for MMP-9 protein translation. The in vivo relationship between MMP-9, NO and Aß degradation was examined by comparing an Alzheimer's disease mouse model that expresses NOS2 with a model lacking NOS2. To quantitate MMP-9 mediated changes, we generated an antibody recognizing the Aß1-16 fragment, and used mass spectrometry multi-reaction monitoring assay for detection of immunoprecipitated Aß1-16 peptides. Aß1-16 levels decreased in brain lysates lacking NOS2 when compared with strains that express human amyloid precursor protein on the NOS2 background. TIMP-1 increased in the APPSwDI/NOS2(-/-) mice with decreased MMP activity and increased amyloid burden, thereby supporting roles for NO in the regulation of MMP/TIMP balance and plaque clearance.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Matrix Metalloproteinase 9/metabolism , Nitric Oxide/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Animals , Astrocytes/metabolism , Brain/metabolism , Chromatography, Liquid , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoprecipitation , Male , Matrix Metalloproteinase 2/metabolism , Mice , Mice, Transgenic , Reverse Transcriptase Polymerase Chain Reaction , Tandem Mass Spectrometry
19.
Breast Cancer Res ; 14(5): R125, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22971289

ABSTRACT

INTRODUCTION: The Ets-1 transcription factor is a candidate breast cancer oncogene that regulates the expression of genes involved in tumor progression and metastasis. Ets-1 signaling has also been linked to the development of a basal-like breast cancer phenotype. We recently described a nitric oxide (NO)-induced gene signature that is associated with poor disease outcome in estrogen receptor-negative (ER-) breast cancer and contains both stem cell-like and basal-like components. Thus, we examined the role of Ets-1 in NO signaling and NO-induced phenotypes in ER- human breast cancer cells. METHODS: Promoter region analyses were performed on genes upregulated in inducible nitric oxide synthase (NOS2) high expressing tumors for Ets-binding sites. In vitro mechanisms were examined in human basal-like breast cancer cells lines. NO signaling effects were studied using either forced NOS2 expression or the use of a chemical NO-donor, diethlylenetriamine NONOate (DETANO). RESULTS: Promoter region analysis of genes that are up-regulated in human ER-negative breast tumors with high NOS2 expression revealed that the Ets-binding sequence is the only common promoter element present in all of these genes, indicating that Ets-1 is the key transcriptional factor down-stream of oncogenic NOS2-signaling. Accordingly, both forced NOS2 over-expression and exposure to NO-donors resulted in significant Ets-1 transcriptional activation in ER- breast cancer cells. Functional studies showed that NO activated Ets-1 transcriptional activity via a Ras/MEK/ERK signaling pathway by a mechanism that involved Ras S-nitrosylation. RNA knock-down of Ets-1 suppressed NO-induced expression of selected basal-like breast cancer markers such as P-cadherin, S100A8, IL-8 and αß-crystallin. Additionally, Ets-1 knock-down reduced NO-mediated cellular proliferation, matrix metalloproteinase and cathepsin B activities, as well as matrigel invasion. CONCLUSIONS: These data show that Ets-1 is a key transcriptional mediator of oncogenic NO signaling that promotes the development of an aggressive disease phenotype in ER- breast cancer in an Ets-1 and Ras-dependent manner, providing novel clues of how NOS2 expression in human breast tumors is functionally linked to poor patient survival.


Subject(s)
Breast Neoplasms/metabolism , Nitric Oxide/metabolism , Proto-Oncogene Protein c-ets-1/metabolism , Receptors, Estrogen/metabolism , Signal Transduction , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , MAP Kinase Signaling System , Matrix Metalloproteinases/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Phenotype , Receptors, Estrogen/genetics , Transcription, Genetic , ras Proteins/metabolism
20.
PLoS One ; 7(9): e44081, 2012.
Article in English | MEDLINE | ID: mdl-22957045

ABSTRACT

Prediction of therapeutic response and cancer patient survival can be improved by the identification of molecular markers including tumor Akt status. A direct correlation between NOS2 expression and elevated Akt phosphorylation status has been observed in breast tumors. Tissue inhibitor matrix metalloproteinase-1 (TIMP-1) has been proposed to exert oncogenic properties through CD63 cell surface receptor pathway initiation of pro-survival PI3k/Akt signaling. We employed immunohistochemistry to examine the influence of TIMP-1 on the functional relationship between NOS2 and phosphorylated Akt in breast tumors and found that NOS2-associated Akt phosphorylation was significantly increased in tumors expressing high TIMP-1, indicating that TIMP-1 may further enhance NO-induced Akt pathway activation. Moreover, TIMP-1 silencing by antisense technology blocked NO-induced PI3k/Akt/BAD phosphorylation in cultured MDA-MB-231 human breast cancer cells. TIMP-1 protein nitration and TIMP-1/CD63 co-immunoprecipitation was observed at NO concentrations that induced PI3k/Akt/BAD pro-survival signaling. In the survival analysis, elevated tumor TIMP-1 predicted poor patient survival. This association appears to be mainly restricted to tumors with high NOS2 protein. In contrast, TIMP-1 did not predict poor survival in patient tumors with low NOS2 expression. In summary, our findings suggest that tumors with high TIMP-1 and NOS2 behave more aggressively by mechanisms that favor Akt pathway activation.


Subject(s)
Breast Neoplasms/enzymology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Nitric Oxide Synthase/physiology , Nitric Oxide/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tissue Inhibitor of Metalloproteinase-1/physiology , CD36 Antigens/biosynthesis , Enzyme Activation , Female , Humans , Immunohistochemistry/methods , Microscopy, Confocal/methods , Oligonucleotides, Antisense/genetics , Phosphorylation , Signal Transduction , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...