Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(10): 4205-4212, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38433457

ABSTRACT

Accurate identification of single-nucleotide mutations in circulating tumor DNA (ctDNA) is critical for cancer surveillance and cell biology research. However, achieving precise and sensitive detection of ctDNAs in complex physiological environments remains challenging due to their low expression and interference from numerous homologous species. This study introduces single-nucleotide-specific lipidic nanoflares designed for the precise and visible detection of ctDNA via toehold-initiated self-priming DNA polymerization (TPP). This system can be assembled from only a single cholesterol-conjugated multifunctional molecular beacon (MMB) via hydrophobicity-mediated aggregation. This results in a compact, high-density, and nick-hidden arrangement of MMBs on the surface of lipidic micelles, thereby enhancing their biostability and localized concentrations. The assay commences with the binding of frequently mutated regions of ctDNA to the MMB toehold domain. This domain is the proximal holding point for initiating the TPP-based strand-displacement reaction, which is the key step in enabling the discrimination of single-base mutations. We successfully detected a single-base mutation in ctDNA (KRAS G12D) in its wild-type gene (KRAS WT), which is one of the most frequently mutated ctDNAs. Notably, coexisting homologous species did not interfere with signal transduction, and small differences in these variations can be visualized by fluorescence imaging. The limit of detection was as low as 10 amol, with the system functioning well in physiological media. In particular, this system allowed us to resolve genetic mutations in the KRAS gene in colorectal cancer, suggesting its high potential in clinical diagnosis and personalized medicine.


Subject(s)
Circulating Tumor DNA , Proto-Oncogene Proteins p21(ras) , Proto-Oncogene Proteins p21(ras)/genetics , Nucleotides , Polymerization , Mutation , Circulating Tumor DNA/genetics
2.
ACS Appl Mater Interfaces ; 16(1): 281-291, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38156775

ABSTRACT

Intelligent DNA nanomachines are powerful and versatile molecular tools for bioimaging and biodiagnostic applications; however, they are generally constrained by complicated synthetic processes and poor reaction efficiencies. In this study, we developed a simple and efficient molecular machine by coupling a self-powered rolling motor with a lipidic nanoflare (termed RMNF), enabling high-contrast, robust, and rapid probing of cancer-associated microRNA (miRNA) in serum and living cells. The lipidic nanoflare is a cholesterol-based lipidic micelle decorated with hairpin-shaped tracks that can be facilely synthesized by stirring in buffered solution, whereas the 3D rolling motor (3D RM) is a rigidified tetrahedral DNA scaffold equipped with four single-stranded "legs" each silenced by a locking strand. Once exposed to the target miRNA, the 3D RM can be activated, followed by self-powered precession based on catalyzed hairpin assembly (CHA) and lighting up of the lipidic nanoflare. Notably, the multivalent 3D RM that moves using four DNA legs, which allows the motor to continuously and acceleratedly interreact with DNA tracks rather than dissociate from the surface of the nanoflare, yielded a limit of detection (LOD) of 500 fM at 37 °C within 1.5 h. Through the nick-hidden and rigidified structure design, RMNF exhibits high biostability and a low false-positive signal under complex physiological settings. The final application of RMNF for miRNA detection in clinical samples and living cells demonstrates its considerable potential for biomedical imaging and clinical diagnosis.


Subject(s)
Biosensing Techniques , MicroRNAs , Humans , MicroRNAs/genetics , DNA/chemistry , MCF-7 Cells , Limit of Detection , Biosensing Techniques/methods
3.
Biosens Bioelectron ; 237: 115501, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37392492

ABSTRACT

The practical application of DNA biosensors is impeded by numerous limitations in complicated physiological environments, particularly the susceptibility of common DNA components to nuclease degradation, which has been recognized as a major barrier in DNA nanotechnology. In contrast, the present study presents an anti-interference and reinforced biosensing strategy based on a 3D DNA-rigidified nanodevice (3D RND) by converting a nuclease into a catalyst. 3D RND is a well-known tetrahedral DNA scaffold containing four faces, four vertices, and six double-stranded edges. The scaffold was rebuilt to serve as a biosensor by embedding a recognition region and two palindromic tails on one edge. In the absence of a target, the rigidified nanodevice exhibited enhanced nuclease resistance, resulting in a low false-positive signal. 3D RNDs have been proven to be compatible with 10% serum for at least 8 h. Once exposed to the target miRNA, the system can be unlocked and converted into common DNAs from a high-defense state, followed by polymerase- and nuclease-co-driven conformational downgrading to achieve amplified and reinforced biosensing. The signal response can be improved by approximately 700% within 2 h at room temperature, and the limit of detection (LOD) is approximately 10-fold lower under biomimetic conditions. The final application to serum miRNA-mediated clinical diagnosis of colorectal cancer (CRC) patients revealed that 3D RND is a reliable approach to collecting clinical information for differentiating patients from healthy individuals. This study provides novel insights into the development of anti-interference and reinforced DNA biosensors.

4.
Anal Chim Acta ; 1221: 340132, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35934367

ABSTRACT

MicroRNAs (miRNAs) and p53 gene can serve as valuable biomarkers for the diagnosis of a variety of cancers. Nevertheless, although the development of the DNA nanostructure on the detection of cancer-related biomarkers was initially demonstrated several years ago, the challenges of developing simpler, cheaper, and multi-level detection DNA biosensors persist. Herein, based on the rolling circle amplification (RCA) coupled with the target-triggered skill, we have developed a well-designed detecting platform. In this study, the dumbbell-shaped probes (DPP) could be cyclized and initiated through targets, thus beginning the target-catalyst RCA (tc-RCA) reaction, therefore engendering numerous dumbbell probe amplicons (DPA). Thereafter the probe primers (PP) mutually complementary to the loop of DPA was introduced, leading to the branch strand displacement reaction (B-SDA). SYBR Green I can effectively bind to the amplified double-stranded structures as a fluorescent reporter. Altering the target-binding sequence of the DPP, this biosensor can also be applied to detect different biomarkers. As a consequence, target miR-21 and p53 gene can be detected down to 0.65 fM and 2.04 fM respectively with a wide dynamic range. Moreover, we have also achieved the qualitative detection of interesting targets in cell lysates as well as the complex biological substrates and compared the results with reverse transcription quantitative PCR (RT-qPCR), thereby indicating the potential application in clinical diagnosis and biomedical research.


Subject(s)
MicroRNAs , Nucleic Acid Amplification Techniques , Biomarkers , DNA/chemistry , Genes, p53 , Limit of Detection , MicroRNAs/analysis , MicroRNAs/genetics , Nucleic Acid Amplification Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...