Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804081

ABSTRACT

A magnetic, mesoporous core/shell structured Fe3O4@SiO2@mSiO2 nanocomposite was synthesized and employed as a magnetic solid phase extraction (MSPE) sorbent for the determination of trace sulfonamides (SAs) in food samples. The synthesized nanocomposite was characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, X-ray diffraction, N2 sorption analysis and vibrating sample magnetometry. The results showed that Fe3O4@SiO2@mSiO2 possessed a mesoporous structure with a large surface area. Batch experiments were carried out to investigate the adsorption ability for SAs. Fe3O4@SiO2@mSiO2 showed fast kinetics and high adsorption capacity, and the pseudo-second-order model and Langmuir adsorption isotherm are well fitted with the experimental data, indicating that chemical adsorption might be the rate-limiting step. Moreover, the high adsorption capacity can be maintained for at least 8 runs, indicating excellent stability and reusability. The proposed method exhibited good linearity in the range of 0.2-500 µg L-1, the R2 values of all the analytes were greater than 0.99 and the LODs were all lower than 0.2 µg L-1. Furthermore, real food samples were successfully analyzed with Fe3O4@SiO2@mSiO2 and high recoveries varying from 89.7% and 110.6% were obtained with low relative standard deviations ranging from 1.78% to 6.91%. The Fe3O4@SiO2@mSiO2 magnetic nanocomposite is a promising sorbent for the efficient extraction of SAs from complex food samples.

2.
Colloids Surf B Biointerfaces ; 238: 113889, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574404

ABSTRACT

A novel core-shell with a tetradecyl dimethyl benzyl ammonium chloride-modified montmorillonite (TDMBA/MMT) interlayer silk fibroin (SF)/poly(lactic acid) (PLLA) nanofibrous membrane was fabricated using a simple conventional electrospinning method. Scanning electron microscopy and pore size analyses revealed that this core-shell with TDMBA/MMT interlayer maintained its nanofibrous morphology and larger pore structure more successfully than SF/PLLA nanofibrous membranes after treatment with 75% ethanol vapor. Transmission electron microscopy and energy-dispersive X-ray spectroscopy analyses testified that the SF/PLLA-TDMBA/MMT nanofibers exhibited a core-shell with an interlayer structure, with SF/PLLA in the core-shell layer and TDMBA/MMT in the interlayer. The formation of a core-shell with interlayer nanofibers was primarily attributed to the uniform dispersion of TDMBA/MMT nanosheets in a solution owing to its exfoliation using hexafluoroisopropanol and then preparing a stable spinning solution similar to an emulsion. Compared to SF/PLLA nanofibrous membranes, the core-shell structure with TDMBA/MMT interlayers of SF/PLLA nanofibrous membranes exhibited enhanced hydrophilicity, thermal stability, mechanical properties as well as improved and long-lasting antimicrobial performance against Escherichia coli and Staphylococcus aureus without cytotoxicity.


Subject(s)
Bentonite , Escherichia coli , Nanofibers , Staphylococcus aureus , Bentonite/chemistry , Bentonite/pharmacology , Nanofibers/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Fibroins/chemistry , Fibroins/pharmacology , Polyesters/chemistry , Polyesters/pharmacology , Membranes, Artificial , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Mice , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...