Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Natl Sci Rev ; 10(4): nwac174, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37124465

ABSTRACT

Highly specialized myrmecophagy (ant- and termite-eating) has independently evolved multiple times in species of various mammalian orders and represents a textbook example of phenotypic evolutionary convergence. We explored the mechanisms involved in this unique dietary adaptation and convergence through multi-omic analyses, including analyses of host genomes and transcriptomes, as well as gut metagenomes, in combination with validating assays of key enzymes' activities, in the species of three mammalian orders (anteaters, echidnas and pangolins of the orders Xenarthra, Monotremata and Pholidota, respectively) and their relatives. We demonstrate the complex and diverse interactions between hosts and their symbiotic microbiota that have provided adaptive solutions for nutritional and detoxification challenges associated with high levels of protein and lipid metabolisms, trehalose degradation, and toxic substance detoxification. Interestingly, we also reveal their spatially complementary cooperation involved in degradation of ants' and termites' chitin exoskeletons. This study contributes new insights into the dietary evolution of mammals and the mechanisms involved in the coordination of physiological functions by animal hosts and their gut commensals.

2.
Nat Genet ; 48(8): 947-52, 2016 08.
Article in English | MEDLINE | ID: mdl-27399969

ABSTRACT

The snub-nosed monkey genus Rhinopithecus includes five closely related species distributed across altitudinal gradients from 800 to 4,500 m. Rhinopithecus bieti, Rhinopithecus roxellana, and Rhinopithecus strykeri inhabit high-altitude habitats, whereas Rhinopithecus brelichi and Rhinopithecus avunculus inhabit lowland regions. We report the de novo whole-genome sequence of R. bieti and genomic sequences for the four other species. Eight shared substitutions were found in six genes related to lung function, DNA repair, and angiogenesis in the high-altitude snub-nosed monkeys. Functional assays showed that the high-altitude variant of CDT1 (Ala537Val) renders cells more resistant to UV irradiation, and the high-altitude variants of RNASE4 (Asn89Lys and Thr128Ile) confer enhanced ability to induce endothelial tube formation in vitro. Genomic scans in the R. bieti and R. roxellana populations identified signatures of selection between and within populations at genes involved in functions relevant to high-altitude adaptation. These results provide valuable insights into the adaptation to high altitude in the snub-nosed monkeys.


Subject(s)
Adaptation, Physiological/genetics , Colobinae/genetics , Genetic Markers/genetics , Genome , Genomics/methods , Amino Acid Sequence , Animals , Colobinae/classification , Phylogeny , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...