Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38676275

ABSTRACT

As graphene-related technology advances, the benefits of graphene metamaterials become more apparent. In this study, a surface-isolated exciton-based absorber is built by running relevant simulations on graphene, which can achieve more than 98% perfect absorption at multiple frequencies in the MWIR (MediumWavelength Infra-Red (MWIR) band as compared to the typical absorber. The absorber consists of three layers: the bottom layer is gold, the middle layer is dielectric, and the top layer is patterned with graphene. Tunability was achieved by electrically altering graphene's Fermi energy, hence the position of the absorption peak. The influence of graphene's relaxation time on the sensor is discussed. Due to the symmetry of its structure, different angles of light source incidence have little effect on the absorption rate, leading to polarization insensitivity, especially for TE waves, and this absorber has polarization insensitivity at ultra-wide-angle degrees. The sensor is characterized by its tunability, polarisation insensitivity, and high sensitivity, with a sensitivity of up to 21.60 THz/refractive index unit (RIU). This paper demonstrates the feasibility of the multi-frequency sensor and provides a theoretical basis for the realization of the multi-frequency sensor. This makes it possible to apply it to high-sensitivity sensors.

2.
Phys Chem Chem Phys ; 26(5): 4597-4606, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38250817

ABSTRACT

We proposed a triple-band narrowband device based on a metal-insulator-metal (MIM) structure in visible and near-infrared regions. The finite difference time domain (FDTD) simulated results illustrated that the absorber possessed three perfect absorption peaks under TM polarization, and the absorption efficiencies were about 99.76%, 99.99%, and 99.92% at 785 nm, 975 nm, and 1132 nm, respectively. Simulation results matched well with the results of coupled-mode theory (CMT). Analyses of the distributions of the electric field indicated the "perfect" absorption was due to localized surface plasmon polaritons resonance (LSPPR) and Fabry-Perot resonance. We developed a multi-band absorber with more ellipsoid pillars. The four band-absorbing device presented perfect absorption at 767 nm, 1046 nm, 1122 nm, and 1303 nm, and the absorption rates were 99.45%, 99.41%, 99.99%, and 99.94%, respectively. By changing the refractive index of the surrounding medium, the resonant wavelengths could be tuned linearly. The maximum sensitivity and Figure of Merit were 230 nm RIU-1 and 10.84 RIU-1, respectively. The elliptical structural design provides more tuning degrees of freedom. The absorber possessed several satisfactory performances: excellent absorption behavior, multiple bands, tunability, incident insensitivity, and simple structure. Therefore, the designed absorbing device has enormous potential in optoelectronic detection, optical switching, and imaging.

3.
J Opt Soc Am A Opt Image Sci Vis ; 40(10): 1873-1881, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37855543

ABSTRACT

The self-healing properties of symmetrical power-exponent-phase vortices (SPEPVs) are analyzed in this paper. By placing an obstacle in the optical path of SPEPVs, we simulated the propagation of the obstructed SPEPVs and verified the self-healing of the beam theoretically. We also explored the influence of external factors (e.g., obstacle size and position) and internal parameters (topological charge l and power exponent n) on the self-healing effect of obstructed SPEPVs. Furthermore, the energy flow density, similarity coefficient, effective self-healing distance, and diffraction efficiency of the obstructed SPEPVs were also discussed. The results demonstrated that the transverse energy flows around the obstructed region of SPEPVs will recover with the propagation distance increased, and the effective self-healing distance gradually increases linearly with the obstacle size r x increased. The self-healing characteristic gives the petal-like SPEPVs the ability to trap microparticles three-dimensionally.

4.
Phys Chem Chem Phys ; 25(40): 27586-27594, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37807903

ABSTRACT

In this paper, we proposed an ultra-broadband and high absorption rate absorber based on Fe materials. The proposed absorber consists of a rectangle pillar, two rings, a SiO2 film, a Ge2Sb2Te5(GST) planar cavity, an Fe mirror, and a SiO2 substrate. The average absorption reaches 98.45% in the range of 400-4597 nm. We investigate and analyze the electric field distributions. The analysis of the physical mechanism behind the broadband absorption effect reveals that it is driven by excited surface plasmons. Furthermore, the absorber can maintain high absorption efficiency under a large incident angle. The geometrical symmetric structure possesses polarization insensitivity properties. The proposed structure allows for certain manufacturing errors, which improves the feasibility of the actual manufacture. Then, we investigate the effect of different materials on absorption. Finally, we study the matching degree between the energy absorption spectrum and the standard solar spectrum under AM 1.5. The results reveal that the energy absorption spectrum matches well with the standard solar spectrum under AM 1.5 over the full range of 400 to 6000 nm. In contrast, energy loss can be negligible. The absorber possesses ultra-broadband perfect absorption, a high absorption rate, and a simple structure which is easy to manufacture. It has tremendous application potential in many areas, such as solar energy capture, thermal photovoltaics, terminal imaging, and other optoelectronic devices.

5.
J Opt Soc Am A Opt Image Sci Vis ; 40(9): 1706-1713, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37707007

ABSTRACT

In this paper, we generate a type of double helico-conical beam (HCB) by binarizing the modified helico-conical phase (MHCP). The diffraction patterns of the double HCBs were analyzed theoretically and experimentally. The relative position of the double HCBs can be adjusted arbitrarily by introducing a blazed grating only. In addition, the superposition of multiple binary MHCPs can be used to generate multi-helix beams. Accordingly, the diffraction patterns of the multi-helix beams were also analyzed theoretically and experimentally. The results demonstrated that the number and relative position of multi-helix beams can be adjusted by the number of superimposed MHCP profiles and the azimuth factor θ j, respectively. This kind of arrayed HCB will be potentially applied in the fields of optical manipulation and multiplexed holography.

6.
Phys Chem Chem Phys ; 25(35): 23855-23866, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37641967

ABSTRACT

In this paper, a TM polarization multi-band absorber is achieved in a graphene-Ag asymmetrical grating structure. The proposed absorber can achieve perfect absorption at 1108 nm, 1254 nm, and 1712 nm (the absorption exceeds 98.4% at the three peaks). Results show that the perfect absorption effect originates from the excitation of magnetic polaritons (MPs) in the silver ridge grating; a LC equivalent circuit model is utilized to confirm the finite-difference-time-domain (FDTD) simulation. The influences of the incident angle, polarization angle, and geometrical size on the absorption spectrum are investigated. Moreover, a quadruple band absorber and a quintuple band absorber are also designed by introducing more silver grating ridges in one period. The proposed graphene-Ag asymmetrical structure has some advantages compared with other absorbers such as the ability to be independently tuned and a simple structure. Thus, the proposed structure can be applied in the areas of multiple absorption switches, near-infrared modulators, and sensors.

7.
Phys Chem Chem Phys ; 25(29): 19596-19605, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37435700

ABSTRACT

To further reduce the fabrication difficulty of optical fiber sensors and improve the sensing performance, this study introduced the surface plasmon resonance (SPR) effect into optical fiber sensing technology and designed an eccentric-core photonic crystal fiber (EC-PCF). We investigated the characteristics of the two fundamental modes in the fiber core and the surface plasmon polariton (SPP) modes on the surface of the gold film. We also investigated the influence of the structural parameters, such as gold film coating area and thickness, air hole diameter, and eccentricity, on the confinement loss and achieved a refractive index (RI) sensitivity of 31.25 µm RIU-1 in the RI range of 1.29-1.43, corresponding to a figure of merit (FOM) of 521.6 per RIU. When the resolution of the optical spectrum analyzer was 0.1 nm, the EC-PCF could achieve a refractive index resolution of 3.2 × 10-6 RIU. Moreover, we performed tests with two typical sensing types, one in which the sensor was directly in contact with adulterated gasoline to achieve kerosene-concentration detection, and another in which the sensor was coated with a layer of polydimethylsiloxane (PDMS), whose RI is sensitive to the temperature field, to achieve temperature sensing. The EC-PCF demonstrated excellent sensing performance and offers obvious manufacturing advantages, providing a new and easily fabricated structural design idea for optical fiber sensing.

8.
Phys Chem Chem Phys ; 25(30): 20706-20714, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37489769

ABSTRACT

In this work, we theoretically designed a dynamically changeable terahertz metamaterial absorber with intelligent switch and high sensitivity, wide band and narrow band perfect absorption based on the combination of Dirac semimetal (BDS) and vanadium dioxide (VO2). It features two methods for absorption adjustment: altering the Fermi energy level of BDS to modify the resonant frequency of the absorption peaks and utilizing the phase change of VO2 to regulate the absorption rate of the peaks. In addition, its rotational symmetric design ensures strong polarization-insensitivity. The simulation results demonstrate the presence of two narrowband absorption peaks and one mini-broadband absorption peak within the frequency range of 6.0-9.5 THz, all with absorption rates exceeding 90%. We provide an explanation of the absorption mechanism of the device, employing the relative impedance theory and localized surface plasmon resonance to analyze its electric field distribution. We also defined the refractive index sensitivity (S), which is SI = 378 GHz per RIU and SIII = 204 GHz per RIU. Our device possesses high sensitivity and two methods of adjusting absorption modes, which endow it with advantages in the fields of metamaterial absorbers, intelligent switch, and optical sensors.

9.
Dalton Trans ; 52(24): 8294-8301, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37255020

ABSTRACT

A thermally tunable terahertz window based on the combination of a metamaterial and the phase change material VO2 is proposed. The window is composed of two vanadium oxide films with a SiO2 layer sandwiched between them. The thermochromic phase change properties of VO2 are the key to the functionality of the window. By controlling the temperature around the room temperature of 300 K, our material can be used as a smart window and it is able to regulate both the absorption and transmission of external terahertz waves in response to changes in temperature. The absorbance can be regulated by more than 90% and the transmittance by more than 80%. The switching characteristics of the window are explained by the insulator-metal transition that vanadium oxide undergoes during the heating process, while localized surface plasmon resonance explains the perfect absorption. In addition, the designed window is not only insensitive to polarised waves, but is thermally flexible and maintains excellent performance over a wide angular range of 0° to 40°. This design will have significant potential for applications in stealth technologies, thermal sensing and switching, and terahertz energy harvesting.

10.
Phys Chem Chem Phys ; 25(12): 8489-8496, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36883439

ABSTRACT

With the development of science and technology, intermediate infrared technology has gained more and more attention in recent years. In the research described in this paper, a tunable broadband absorber based on a Dirac semimetal with a layered resonant structure was designed, which could achieve high absorption (more than 0.9) of about 8.7 THz in the frequency range of 18-28 THz. It was confirmed that the high absorption of the absorber comes from the strong resonance absorption between the layers, and the resonance of the localised surface plasmon. The absorber has a gold substrate, which is composed of three layers of Dirac semimetal and three layers of optical crystal plates. In addition, the resonance frequency of the absorber can be changed by adjusting the Fermi energy of the Dirac semimetal. The absorber also shows excellent characteristics such as tunability, absorption stability at different polarisation waves and incident angles, and has a high application value for use in radar countermeasures, biotechnology and other fields.

11.
Phys Chem Chem Phys ; 25(5): 3820-3833, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36645136

ABSTRACT

A periodic patterned graphene-based terahertz metamaterial comprising three transverse graphene strips and one longitudinal continuous graphene ribbon is proposed to achieve a dynamically tunable quadruple plasmon-induced transparency (PIT) effect. Further analysis of the magnetic field distribution along the x-direction shows that the quadruple-PIT window can be produced by the strong destructive interference between the bright mode and the dark mode. The spectral response characteristics of the quadruple-PIT effect are numerically and theoretically investigated, and the results obtained by the finite-difference time-domain (FDTD) simulation fit well with that by the coupled mode theory (CMT) calculation. In addition, two hepta-frequency asynchronous switches are achieved by tuning the Fermi energy of the graphene, and their maximum modulation depths are 98.9% and 99.7%, corresponding to the insertion losses of 0.173 dB and 0.334 dB, respectively. Further studies show that polarization light has a significant impact on the quadruple-PIT, resulting in a polarization-sensitive switch being realized with a maximum modulation depth of 99.7% and a minimum insertion loss of 0.048 dB. In addition, when the Fermi energy is equal to 1.2 eV, the maximum time delay and group refractive index of the quadruple-PIT can be respectively as high as 1.065 ps and 3194, and the maximum delay-bandwidth product reaches 1.098, which means that excellent optical storage is achieved. Thus, our proposed quadruple-PIT system can be used to design a terahertz multi-channel switch and optical storage.

12.
Dalton Trans ; 52(1): 81-89, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36458658

ABSTRACT

A semiconductor oxide composite consisting of ZnO nanorods (NRs) and ZnO inverse opal (IO) was fabricated and used in the photoanode of quantum dot-sensitized solar cells (QDSSCs). Using polystyrene spheres 500, 800, 1000, and 1500 nm in diameter as the IO template, ZnO composites and corresponding QDSSCs with ZnO IOs of different pore sizes were fabricated. The oxide composite prepared with ZnO IOs of different pore sizes showed similar micro-morphologies; however, the photovoltaic performance of the QDSSCs based on these composites varied greatly. The QDSSCs based on the ZnO composite achieved high power conversion efficiencies (PCEs) of more than 6%, and the maximum PCE was 7.26% when the ZnO IO pore diameter in the composite was 800 nm. This resulted in very high PCE values for the QDSSCs using CdS/CdSe quantum dot sensitizers. With further interface modifications of NH4F and ZnS, the QDSSC achieved an even higher PCE value of 11.38%. Subsequently, the effects of ZnO IO pore size in the composite on QDSSC performance were investigated.

13.
Sensors (Basel) ; 22(17)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36080942

ABSTRACT

The paper proposes an ultra-narrow band graphene refractive index sensor, consisting of a patterned graphene layer on the top, a dielectric layer of SiO2 in the middle, and a bottom Au layer. The absorption sensor achieves the absorption efficiency of 99.41% and 99.22% at 5.664 THz and 8.062 THz, with the absorption bandwidths 0.0171 THz and 0.0152 THz, respectively. Compared with noble metal absorbers, our graphene absorber can achieve tunability by adjusting the Fermi level and relaxation time of the graphene layer with the geometry of the absorber unchanged, which greatly saves the manufacturing cost. The results show that the sensor has the properties of polarization-independence and large-angle insensitivity due to the symmetric structure. In addition, the practical application of testing the content of hemoglobin biomolecules was conducted, the frequency of first resonance mode shows a shift of 0.017 THz, and the second resonance mode has a shift of 0.016 THz, demonstrating the good frequency sensitivity of our sensor. The S (sensitivities) of the sensor were calculated at 875 GHz/RIU and 775 GHz/RIU, and quality factors FOM (Figure of Merit) are 26.51 and 18.90, respectively; and the minimum limit of detection is 0.04. By comparing with previous similar sensors, our sensor has better sensing performance, which can be applied to photon detection in the terahertz band, biochemical sensing, and other fields.


Subject(s)
Graphite , Refractometry , Metals , Refraction, Ocular , Silicon Dioxide
14.
Opt Express ; 30(6): 9924-9933, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299405

ABSTRACT

We investigate the dynamic evolution and self-healing properties of the bored helico-conical beams with different filter parameter S in this paper. The relative error coefficient, D, is utilized to judge the self-healing effect of the bored helico-conical beam. The result demonstrates that the self-healing effect of the bored beams will be perfect when D approaches to 0. We also discuss the influence of the filter parameter S on the effective self-healing distance theoretically and experimentally. The result demonstrates that the effective self-healing distance decreases exponentially with the increasing filter parameter S. Moreover, the corresponding transverse energy flows of the bored beams are analyzed. The experimental results of the dynamic evolution for the bored helico-conical beams agree with the simulation ones well.

15.
Phys Chem Chem Phys ; 23(47): 26864-26873, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34821236

ABSTRACT

A four-band terahertz tunable narrow-band perfect absorber based on a bulk Dirac semi-metallic (BDS) metamaterial with a microstructure is designed. The three-layer structure of this absorber from top to bottom is the Dirac semi-metallic layer, the dielectric layer and the metal reflector layer. Based on the Finite Element Method (FEM), we use the simulation software CST STUDIO SUITE to simulate the absorption characteristics of the designed absorber. The simulation results show that the absorption rate of the absorber is over 93% at frequencies of 1.22, 1.822, 2.148 and 2.476 THz, and three of them have achieved a perfect absorption rate of more than 95%. We use the localized surface plasmon resonance (LSPR), impedance matching and other theories to analyze its physical mechanism in detail. The influence of the geometric structure parameters of the absorber and the incident angle of electromagnetic waves on the absorption performance has also been studied in detail. Due to the rotational symmetry of the structure, the designed absorber has excellent polarization insensitivity. In addition, the maximum adjustable range of absorption frequency is 0.051 THz, which can be achieved by changing the Fermi energy of BDS. We also define the refractive index sensitivity (S), which is 39.1, 75.4, 119.1 and 122.0 GHz RIU-1 for the four absorption modes when the refractive index varies in the range of 1 to 1.9. This high-performance absorber has a very good development prospect in the frontier fields of bio-chemical sensing and special environmental detection.

16.
Opt Express ; 28(25): 37827-37843, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33379610

ABSTRACT

A modified single-focus fractal zone plate (MSFFZP) is proposed to generate a single main focus with many subsidiary foci or two equal-intensity main foci with many subsidiary foci. Widths of high-transmission zones, which have influence on the number of the high-order diffraction foci, such as the second-order focus and the fourth-order focus, can adjust first-order fractal focal intensities, but have no influence on first-order focal positions. Moreover, the MSFFZPs have the first-order foci or the first and second order foci only along the optic axis. It is proved numerically and experimentally that the MSFFZP can generate one or two colourful images with the low chromatic aberrations at the focal planes, and the MSFFZP beam has the self-reconstruction property. In addition, the MSFFZP produces a series of foci at the different focal planes along the optic axis in the simulations and experiments. The method of constructing the MSFFZP is illustrated. The proposed zone plate can be used to produce the multiple clear images, trap particles at the multiple planes simultaneously, and generate the images with the low chromatic aberration.

17.
Nanoscale ; 12(45): 23077-23083, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33179661

ABSTRACT

Nowadays, solar energy is considered one of the most clean energy sources. In addition, the data from the literature tell us that its main radiation bandwidth is approximately 295-2500 nm. In this work, we proposed a novel kind of broadband solar energy absorber based on tungsten (W) to achieve broadband absorption of solar energy. A four-layer ring-disk structure (SiO2-SiO2-W) is employed in our design. A finite-difference time-domain (FDTD) simulation was used to ascertain the absorption performance of the absorber. The results demonstrate that a broadband solar energy absorption was realized, the bandwidth is of 1530 nm with an absorption efficiency of more than 90%, and an absorption efficiency of 97% was achieved in this region. The absorption spectra can be tuned through changing the structural and geometric parameters. Moreover, the absorber has excellent polarization independence and can be used under incident angles from 0° to 60°. The proposed solar energy absorber is simple to fabricate, and can be used for photothermal conversion, solar energy harvesting and utilization.

18.
Opt Express ; 28(18): 27181-27195, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32906974

ABSTRACT

Generalized composite aperiodic zone plates (GCAZPs) are proposed to generate clearer images at focal planes. The images can be produced by a target object at infinity based on a collimator. The proposed zone plate consists of the proposed radial zone plate (RZP), whose original radius is not zero, and the common aperiodic zone plate, which has the coincident first-order diffraction area and the same axial first-order diffraction intensity distribution. The GCAZPs are applicable for the other aperiodic zone plates. Moreover, the modulation transfer function curve of the GCAZP is basically above that of the corresponding common aperiodic zone plate. Compared with the common aperiodic zone plates, the GCAZPs have the foci with higher intensity and the images with higher contrast at the same focal planes. In addition, a GCAZP with an arbitrary size can be designed. The construction method of the GCAZP is illustrated in details. Furthermore, it has been also proved numerically and experimentally that the GCAZPs are used to generate the clearer images than the corresponding common aperiodic zone plates. The proposed zone plates are applicable to generate clear images and trap particles stably at multiple planes simultaneously.

19.
J Opt Soc Am A Opt Image Sci Vis ; 37(6): 1067-1074, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32543610

ABSTRACT

A modified precious mean zone plate (MPMZP) is proposed to generate twin equal-intensity foci with the same resolution related to the precious mean. The MPMZP with a bigger copy number C can generate two equal-intensity foci with approximately the same resolution. The energy efficiencies of twin foci generated by the MPMZP are approximately the same. Moreover, the MPMZP with a helical phase can generate twin vortices with the same diameter. In addition, it is proven numerically that the MPMZP beam and the spiral-phase MPMZP beam have the self-reconstruction property. The construction method of the MPMZP is illustrated in detail. Moreover, it is proven in the simulations and experiments that twin equal-intensity foci generated by the MPMZP have the same resolution, and the spiral-phase MPMZP can produce twin vortices with the same diameter. The proposed zone plate can be used for optical lithography in two planes at the same extent, and applied to rotate different particles in two planes at the same speed and generate two of the same clear images at two planes related to the precious mean.

20.
RSC Adv ; 9(38): 22092-22100, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-35518900

ABSTRACT

The good catalytic activity, resistance to iodine corrosion, and stability of carbon materials make them ideally suited for the fabrication of counter electrodes used in dye-sensitized solar cells (DSSCs). Different carbon materials have been used to make counter electrodes, and each has its own advantages, such as good film formation or high electric conductivity. Herein, various carbon materials were mixed and employed for preparing counter electrodes in DSSCs. Both fine film morphology and improved charge-carrier transport were obtained, and the power conversion efficiency of the DSSCs was thus increased. Accordingly, a cell efficiency of 6.29% was obtained by the DSSC with a counter electrode composed of the optimum mixture of carbon nanotubes, graphite, conductive carbon black, and graphene. Furthermore, DSSCs with a flexible counter electrode were fabricated using the optimum carbon material mixture, and the corresponding DSSCs achieved a power conversion efficiency of 4.32%.

SELECTION OF CITATIONS
SEARCH DETAIL
...