Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Ecol Evol ; 5(10): 1338-1349, 2021 10.
Article in English | MEDLINE | ID: mdl-34400825

ABSTRACT

Despite substantial conservation efforts, the loss of ecosystems continues globally, along with related declines in species and nature's contributions to people. An effective ecosystem goal, supported by clear milestones, targets and indicators, is urgently needed for the post-2020 global biodiversity framework and beyond to support biodiversity conservation, the UN Sustainable Development Goals and efforts to abate climate change. Here, we describe the scientific foundations for an ecosystem goal and milestones, founded on a theory of change, and review available indicators to measure progress. An ecosystem goal should include three core components: area, integrity and risk of collapse. Targets-the actions that are necessary for the goals to be met-should address the pathways to ecosystem loss and recovery, including safeguarding remnants of threatened ecosystems, restoring their area and integrity to reduce risk of collapse and retaining intact areas. Multiple indicators are needed to capture the different dimensions of ecosystem area, integrity and risk of collapse across all ecosystem types, and should be selected for their fitness for purpose and relevance to goal components. Science-based goals, supported by well-formulated action targets and fit-for-purpose indicators, will provide the best foundation for reversing biodiversity loss and sustaining human well-being.


Subject(s)
Ecosystem , Goals , Biodiversity , Climate Change , Conservation of Natural Resources , Humans
2.
Sci Rep ; 10(1): 17003, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33046733

ABSTRACT

Fish kills, often caused by low levels of dissolved oxygen (DO), involve with complex interactions and dynamics in the environment. In many places the precise cause of massive fish kills remains uncertain due to a lack of continuous water quality monitoring. In this study, we tested if meteorological conditions could act as a proxy for low levels of DO by relating readily available meteorological data to fish kills of grey mullet (Mugil cephalus) using a machine learning technique, the self-organizing map (SOM). Driven by different meteorological patterns, fish kills were classified into summer and non-summer types by the SOM. Summer fish kills were associated with extended periods of lower air pressure and higher temperature, and concentrated storm events 2-3 days before the fish kills. In contrast, non-summer fish kills followed a combination of relatively low air pressure, continuous lower wind speed, and successive storm events 5 days before the fish kills. Our findings suggest that abnormal meteorological conditions can serve as warning signals for managers to avoid fish kills by taking preventative actions. While not replacing water monitoring programs, meteorological data can support fishery management to safeguard the health of the riverine ecosystems.


Subject(s)
Environmental Monitoring/methods , Machine Learning , Meteorological Concepts , Oxygen/analysis , Water/chemistry , Air Pressure , Animals , Ecosystem , Fishes , Humans , Rivers , Seasons
3.
Environ Res ; 184: 109262, 2020 05.
Article in English | MEDLINE | ID: mdl-32087440

ABSTRACT

In the face of multiple habitat alterations originating from both natural and anthropogenic factors, the fast-changing environments pose significant challenges for maintaining ecosystem integrity. Machine learning is a powerful tool for modeling complex non-linear systems through exploratory data analysis. This study aims at exploring a machine learning-based approach to relate environmental factors with fish community for achieving sustainable riverine ecosystem management. A large number of datasets upon a wide variety of eco-environmental variables including river flow, water quality, and species composition were collected at various monitoring stations along the Xindian River of Taiwan during 2005 and 2012. Then the complicated relationship and scientific essences of these heterogonous datasets are extracted using machine learning techniques to have a more holistic consideration in searching a guiding reference useful for maintaining river-ecosystem integrity. We evaluate and select critical environmental variables by the analysis of variance (ANOVA) and the Gamma test (GT), and then we apply the adaptive network-based fuzzy inference system (ANFIS) for an estimation of fish bio-diversity using the Shannon Index (SI). The results show that the correlation between model estimation and the biodiversity index is higher than 0.75. The GT results demonstrate that biochemical oxygen demand (BOD), water temperature, total phosphorus (TP), and nitrate-nitrogen (NO3-N) are important variables for biodiversity modeling. The ANFIS results further indicate lower BOD, higher TP, and larger habitat (flow regimes) would generally provide a more suitable environment for the survival of fish species. The proposed methodology not only possesses a robust estimation capacity but also can explore the impacts of environmental variables on fish biodiversity. This study also demonstrates that machine learning is a promising avenue toward sustainable environmental management in river-ecosystem integrity.


Subject(s)
Conservation of Natural Resources , Ecosystem , Environmental Monitoring , Fishes , Machine Learning , Animals , Neural Networks, Computer , Population Dynamics , Rivers , Taiwan
4.
Sci Rep ; 8(1): 15960, 2018 10 29.
Article in English | MEDLINE | ID: mdl-30374132

ABSTRACT

Risks of stream fish homogenization are attributable to multiple variables operating at various spatial and temporal scales. However, understanding the mechanisms of homogenization requires not only watershed-scale, but also exhaustive fish community structure shifts representing detailed local functional relationships essential to homogenization potentials. Here, we demonstrate the idea of applying AI-based clusters to reveal nonlinear responses of homogenization risks among heterogeneous hydro-chemo-bio variables in space and time. Results found that species introduction, dam isolation, and the potential of climate-mediated disruptions in hydrologic cycles producing degradation in water quality triggered shifts of community assembly and resulting structures producing detrimental conditions for endemic fishes. The AI-based clustering approach suggests that endemic species conservation should focus on alleviation of low flows, control of species introduction, limiting generalist expansion, and enhancing the hydrological connectivity fragmented by dams. Likewise, it can be applied in other geographical and environmental settings for finding homogenization mitigation strategies.


Subject(s)
Fishes/physiology , Animal Distribution , Animals , Climate , Computer Simulation , Conservation of Natural Resources , Ecosystem , Introduced Species , Models, Theoretical , Rivers , Water Movements
5.
Sci Total Environ ; 598: 828-838, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28458200

ABSTRACT

Groundwater over-exploitation has produced many critical problems in the southern Taiwan. The accumulated stresses and demands make groundwater management a complex issue that needs innovative scientific analyses for deriving better water management strategies. In this study, we aimed to provide scientific analyses of the groundwater systems in the Pingtung Plain through soft-computing techniques to explore its spatial-temporal and hydro-geological characteristics for the elaboration of future groundwater management plans and in decision-making process. We conducted a study to assess the essential features of the groundwater systems based on the long-term large datasets of regional groundwater levels by using the principal component analysis (PCA), and the self-organizing map (SOM) with regression analysis. The PCA results demonstrated that two leading components could well present the spatial characteristics of the groundwater systems and classify the region into eastern, western and transition zones. The SOM results could visibly explore the behavior of regional groundwater variations in various aquifers and the multi-relations among climate and hydrogeological variables. Results revealed that the potential of groundwater recharge made by precipitation or river flow was higher in the eastern zone than in the western zone. Analysis results further showed an increase of the groundwater levels in the western zone after year 2006, while there were no obvious increases of the groundwater levels in the eastern or transition zones. Based on the investigated characteristics, we suggest that a sound groundwater management plan should consider zonal difference of the groundwater systems to achieve groundwater conservation.

6.
Sci Total Environ ; 579: 474-483, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27866743

ABSTRACT

The steep slopes of rivers can easily lead to large variations in river water quality during typhoon seasons in Taiwan, which may poses significant impacts on riverine eco-hydrological environments. This study aims to investigate the relationship between fish communities and water quality by using artificial neural networks (ANNs) for comprehending the upstream eco-hydrological system in northern Taiwan. We collected a total of 276 heterogeneous datasets with 8 water quality parameters and 25 fish species from 10 sampling sites. The self-organizing feature map (SOM) was used to cluster, analyze and visualize the heterogeneous datasets. Furthermore, the structuring index (SI) was adopted to determine the relative importance of each input variable of the SOM and identify the indicator factors. The clustering results showed that the SOM could suitably reflect the spatial characteristics of fishery sampling sites. Besides, the patterns of water quality parameters and fish species could be distinguishably (visually) classified into three eco-water quality groups: 1) typical upstream freshwater fishes that depended the most on dissolved oxygen (DO); 2) typical middle-lower reach riverine freshwater fishes that depended the most on total phosphorus (TP) and ammonia nitrogen; and 3) low lands or pond (reservoirs) freshwater fishes that depended the most on water temperature, suspended solids and chemical oxygen demand. According to the results of the SI, the representative indicators of water quality parameters and fish species consisted of DO, TP and Onychostoma barbatulum. This grouping result suggested that the methodology can be used as a guiding reference to comprehensively relate ecology to water quality. Our methods offer a cost-effective alternative to more traditional methods for identifying key water quality factors relating to fish species. In addition, visualizing the constructed topological maps of the SOM could produce detailed inter-relation between water quality and the fish species of stream habitat units.


Subject(s)
Data Mining , Environmental Monitoring/methods , Fishes , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Algorithms , Animals , Biological Oxygen Demand Analysis , Ecosystem , Neural Networks, Computer , Phosphorus/analysis , Taiwan
7.
Sci Total Environ ; 572: 825-836, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27592326

ABSTRACT

Theory predicts that the number of fish species increases with river size in natural free-flowing rivers, but the relationship is lost under intensive exploitation of water resources associated with dams and/or landscape developments. In this paper, we aim to identify orthomorphic issues that disrupt theoretical species patterns based on a multi-year, basin-wide assessment in the Danshuei River Watershed of Taiwan. We hypothesize that multiple human-induced modifications fragment habitat areas leading to decreases of local fish species richness. We integrally relate natural and anthropogenic influences on fish species richness by a multiple linear regression model that is driven by a combination of factors including river network structure controls, water quality alterations of habitat, and disruption of channel connectivity with major discontinuities in habitat caused by dams. We found that stream order is a major forcing factor representing natural influence on fish species richness. In addition to stream order, we identified dams, dissolved oxygen deficiency (DO), and excessive total phosphorus (TP) as major anthropogenic influences on the richness of fish species. Our results showed that anthropogenic influences were operating at various spatial scales that inherently regulate the physical, chemical, and biological condition of fish habitats. Moreover, our probability-based risk assessment revealed causes of species richness reduction and opportunities for mitigation. Risks of species richness reduction caused by dams were determined by the position of dams and the contribution of tributaries in the drainage network. Risks associated with TP and DO were higher in human-activity-intensified downstream reaches. Our methodology provides a structural framework for assessing changes in basin-wide fish species richness under the mixed natural and human-modified river network and habitat conditions. Based on our analysis results, we recommend that a focus on landscape and riverine habitats and maintaining long-term monitoring programs are crucial for effective watershed management and river conservation plans.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Ecosystem , Fishes , Animals , Fresh Water , Linear Models , Taiwan
10.
Phys Rev Lett ; 113(13): 136102, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25302906

ABSTRACT

Adsorption of electronegative elements on a metal surface usually leads to an increase in the work function and decrease in the binding energy as the adsorbate coverage rises. Using density-functional theory calculations, we show that Cl adsorbed on a Mg(0001) surface complies with these expectations, but adsorption of {N,O,F} causes a decrease in the work function and an increase in the binding energy. Analyzing the electronic structure, we show that the presence of a highly polarizable electron spill-out in front of Mg(0001) causes this unusual adsorption behavior and is responsible for the appearance of a hitherto unknown net-attractive lateral electrostatic interaction between same charged adsorbates.

SELECTION OF CITATIONS
SEARCH DETAIL
...