Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(44): 41427-41437, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37969979

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic, nonspecific inflammation of the intestines that primarily comprises Crohn's disease and ulcerative colitis. The incidence and prevalence of IBD have been increasing globally, highlighting the significance of research and prophylactic interventions. Virofree, a mixture of various botanical extracts (including grapes, cherries, olive leaves, marigolds, green tea, and others), has shown significant potential in disease prevention. This study examined the effects of Virofree on intestinal inflammation and the gut microbiota in mice using a dextran sulfate sodium (DSS)-induced model. The mice showed no adverse reactions when administered Virofree. Virofree administration reduced the disease activity index as indicated by amelioration of DSS-induced symptoms in the mice, including weight loss, diarrhea, and rectal bleeding. Regarding the gut microbiota, Virofree intervention modulated the DSS-induced decrease in gut microbial diversity; the Virofree group showed no increase in the phyla Proteobacteria or Verrucomicrobia while displaying an increase in the genus Duncaniella, bacteria that may have protective properties. These findings suggest that Virofree may have a direct or indirect impact on the composition of the gut microbiota and that it can alleviate the imbalance of the microbiome and intestinal inflammation caused by DSS treatment.

2.
J Agric Food Chem ; 71(40): 14604-14614, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37610775

ABSTRACT

Benzo[a]pyrene (B[a]P) is a genotoxic polycyclic aromatic hydrocarbon that is metabolized by cytochrome P450 family 1 enzymes (CYP 1s) and can bind to DNA to form DNA adducts, leading to DNA damage and increased colorectal cancer risk. Previous studies have shown polymethoxyflavones to have a high potential for anticancer effects by regulating CYP 1s, especially nobiletin (NBT) and 5-demethylnobiletin (5-DMNB). However, the effects of NBT and 5-DMNB on B[a]P metabolism remain unclear. Therefore, this study aimed to clarify the effects of NBT and 5-DMNB on B[a]P-induced DNA damage in vitro and in vivo. In NCM460 cells, 5-DMNB and NBT appeared to reduce the metabolic conversion of B[a]P by regulating the aryl hydrocarbon receptor (AhR)/CYP 1s signaling pathway. This process protected NCM460 cells from B[a]P's cytotoxic effects by decreasing DNA damage and suppressing B[a]P diol-epoxide-DNA adduct formation. In BALB/c mice, 5-DMNB and NBT also protected against B[a]P-induced DNA damage. Altogether, these findings indicate that 5-DMNB and NBT attenuate B[a]P-induced DNA damage by modulating biotransformation, highlighting their chemopreventive potential against B[a]P-induced carcinogenesis. Therefore, 5-DMNB and NBT are promising agents for colorectal cancer chemoprevention in the future.


Subject(s)
Benzo(a)pyrene , Colorectal Neoplasms , Mice , Animals , Benzo(a)pyrene/toxicity , Benzo(a)pyrene/metabolism , Xenobiotics , DNA Damage , DNA Adducts , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics
3.
Cell Metab ; 35(1): 118-133.e7, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36599297

ABSTRACT

Immunoediting sculpts immunogenicity and thwarts host anti-tumor responses in tumor cells during tumorigenesis; however, it remains unknown whether metabolic programming of tumor cells can be guided by immunosurveillance. Here, we report that T cell-mediated immunosurveillance in early-stage tumorigenesis instructs c-Myc upregulation and metabolic reprogramming in tumor cells. This previously unexplored tumor-immune interaction is controlled by non-canonical interferon gamma (IFNγ)-STAT3 signaling and supports tumor immune evasion. Our findings uncover that immunoediting instructs deregulated bioenergetic programs in tumor cells to empower them to disarm the T cell-mediated immunosurveillance by imposing metabolic tug-of-war between tumor and infiltrating T cells and forming the suppressive tumor microenvironment.


Subject(s)
Immune Evasion , Neoplasms , Humans , Neoplasms/pathology , Interferon-gamma/metabolism , T-Lymphocytes/metabolism , Carcinogenesis , Cell Transformation, Neoplastic , Tumor Microenvironment
4.
Nat Immunol ; 21(12): 1540-1551, 2020 12.
Article in English | MEDLINE | ID: mdl-33020660

ABSTRACT

The metabolic challenges present in tumors attenuate the metabolic fitness and antitumor activity of tumor-infiltrating T lymphocytes (TILs). However, it remains unclear whether persistent metabolic insufficiency can imprint permanent T cell dysfunction. We found that TILs accumulated depolarized mitochondria as a result of decreased mitophagy activity and displayed functional, transcriptomic and epigenetic characteristics of terminally exhausted T cells. Mechanistically, reduced mitochondrial fitness in TILs was induced by the coordination of T cell receptor stimulation, microenvironmental stressors and PD-1 signaling. Enforced accumulation of depolarized mitochondria with pharmacological inhibitors induced epigenetic reprogramming toward terminal exhaustion, indicating that mitochondrial deregulation caused T cell exhaustion. Furthermore, supplementation with nicotinamide riboside enhanced T cell mitochondrial fitness and improved responsiveness to anti-PD-1 treatment. Together, our results reveal insights into how mitochondrial dynamics and quality orchestrate T cell antitumor responses and commitment to the exhaustion program.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mitochondrial Dynamics/immunology , Biomarkers , Epigenesis, Genetic , Epigenomics , Humans , Mitochondria/drug effects , Mitochondria/immunology , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitophagy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Niacinamide/pharmacology , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Stress, Physiological , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
5.
Mol Ther Oncolytics ; 16: 111-123, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32021906

ABSTRACT

Therapy by adoptive transfer of ex vivo-expanded tumor-infiltrating or genetically modified T cells may lead to impressive clinical responses. However, there is a need to improve in vivo persistence and functionality of the transferred T cells, in particular, to face the highly immunosuppressive environment of solid tumors. Here, we investigate the potential of miR-155, a microRNA known to play an important role in CD8+ T cell fitness. We show that forced expression of miR-155 in tumor antigen-specific T cells improves the tumor control of B16 tumors expressing a low-affinity antigen ligand. Importantly, miR-155-transduced T cells exhibit increased proliferation and effector functions associated with a higher glycolytic activity independent of exogenous glucose. Altogether, these data suggest that miR-155 may optimize the antitumor activity of adoptively transferred low-affinity tumor-infiltrating lymphocytes (TILs), in particular, by rendering them more resistant to the glucose-deprived environment of solid tumors. Thus, transgenic expression of miR-155 may enable therapeutic targeting of self-antigen-specific T cells in addition to neoantigen-specific ones.

6.
Physiol Rev ; 100(1): 1-102, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31414610

ABSTRACT

It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.


Subject(s)
Hypoxia , Immunity , Immunotherapy , Neoplasms/therapy , Animals , Humans , Neoplasms/immunology , Neoplasms/metabolism , Tumor Microenvironment
8.
Cell Stem Cell ; 24(3): 405-418.e7, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30849366

ABSTRACT

It has been recently shown that increased oxidative phosphorylation, as reflected by increased mitochondrial activity, together with impairment of the mitochondrial stress response, can severely compromise hematopoietic stem cell (HSC) regeneration. Here we show that the NAD+-boosting agent nicotinamide riboside (NR) reduces mitochondrial activity within HSCs through increased mitochondrial clearance, leading to increased asymmetric HSC divisions. NR dietary supplementation results in a significantly enlarged pool of progenitors, without concurrent HSC exhaustion, improves survival by 80%, and accelerates blood recovery after murine lethal irradiation and limiting-HSC transplantation. In immune-deficient mice, NR increased the production of human leucocytes from hCD34+ progenitors. Our work demonstrates for the first time a positive effect of NAD+-boosting strategies on the most primitive blood stem cells, establishing a link between HSC mitochondrial stress, mitophagy, and stem-cell fate decision, and unveiling the potential of NR to improve recovery of patients suffering from hematological failure including post chemo- and radiotherapy.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells/cytology , Mitochondria/metabolism , NAD/metabolism , Niacinamide/analogs & derivatives , Animals , Cells, Cultured , Hematopoietic Stem Cells/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Niacinamide/metabolism , Pyridinium Compounds
9.
Nat Immunol ; 20(4): 515-516, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30862953

ABSTRACT

In the version of this article initially published, the bars were not aligned with the data points or horizontal axis labels in Fig. 5d, and the labels along each horizontal axis of Fig. 5j-l indicating the presence (+) or absence (-) of doxycycline (Dox) were incorrectly included with the labels below that axis. Also, the right vertical bar above Fig. 7b linking 'P = 0.0001' to the key was incorrect; the correct comparison is αPD-1 versus Dox + αPD-1. Similarly, the right vertical bar above Fig. 7e linking 'P = 0.0002' to the key was incorrect; the correct comparison is αPD-1 versus Rosig + αPD-1. The errors have been corrected in the HTML and PDF versions of the article.

10.
Nat Immunol ; 20(2): 206-217, 2019 02.
Article in English | MEDLINE | ID: mdl-30664764

ABSTRACT

Immune checkpoint blockade therapy has shifted the paradigm for cancer treatment. However, the majority of patients lack effective responses due to insufficient T cell infiltration in tumors. Here we show that expression of mitochondrial uncoupling protein 2 (UCP2) in tumor cells determines the immunostimulatory feature of the tumor microenvironment (TME) and is positively associated with prolonged survival. UCP2 reprograms the immune state of the TME by altering its cytokine milieu in an interferon regulatory factor 5-dependent manner. Consequently, UCP2 boosts the conventional type 1 dendritic cell- and CD8+ T cell-dependent anti-tumor immune cycle and normalizes the tumor vasculature. Finally we show, using either a genetic or pharmacological approach, that induction of UCP2 sensitizes melanomas to programmed cell death protein-1 blockade treatment and elicits effective anti-tumor responses. Together, this study demonstrates that targeting the UCP2 pathway is a potent strategy for alleviating the immunosuppressive TME and overcoming the primary resistance of programmed cell death protein-1 blockade.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Melanoma, Experimental/immunology , Skin Neoplasms/immunology , Tumor Microenvironment/immunology , Uncoupling Protein 2/immunology , Animals , Antineoplastic Agents, Immunological/pharmacology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Dendritic Cells/immunology , Drug Resistance, Neoplasm/immunology , Female , Humans , Immunotherapy/methods , Interferon Regulatory Factors/immunology , Interferon Regulatory Factors/metabolism , Melanoma, Experimental/blood supply , Melanoma, Experimental/drug therapy , Melanoma, Experimental/mortality , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Skin Neoplasms/blood supply , Skin Neoplasms/drug therapy , Skin Neoplasms/mortality , Survival Analysis , Treatment Outcome , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism
11.
Dis Model Mech ; 11(8)2018 08 02.
Article in English | MEDLINE | ID: mdl-30076128

ABSTRACT

The scientific knowledge about tumor metabolism has grown at a fascinating rate in recent decades. We now know that tumors are highly active both in their metabolism of available nutrients and in the secretion of metabolic by-products. However, cancer cells can modulate metabolic pathways and thus adapt to specific nutrients. Unlike tumor cells, immune cells are not subject to a 'micro-evolution' that would allow them to adapt to progressing tumors that continuously develop new mechanisms of immune escape. Consequently, immune cells are often irreversibly affected and may allow or even support cancer progression. The mechanisms of how tumors change immune cell function are not sufficiently explored. It is, however, clear that commonly shared features of tumor metabolism, such as local nutrient depletion or production of metabolic 'waste' can broadly affect immune cells and contribute to immune evasion. Moreover, immune cells utilize different metabolic programs based on their subtype and function, and these immunometabolic pathways can be modified in the tumor microenvironment. In this review and accompanying poster, we identify and describe the common mechanisms by which tumors metabolically affect the tumor-infiltrating cells of native and adaptive immunity, and discuss how these mechanisms may lead to novel therapeutic opportunities.


Subject(s)
Neoplasms/immunology , Neoplasms/metabolism , Animals , Humans , Immunity , Lymphocytes/metabolism , Salts/metabolism , Tumor Microenvironment/immunology
12.
Nat Immunol ; 18(9): 985-994, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28714978

ABSTRACT

Glutamine metabolism provides synergistic support for macrophage activation and elicitation of desirable immune responses; however, the underlying mechanisms regulated by glutamine metabolism to orchestrate macrophage activation remain unclear. Here we show that the production of α-ketoglutarate (αKG) via glutaminolysis is important for alternative (M2) activation of macrophages, including engagement of fatty acid oxidation (FAO) and Jmjd3-dependent epigenetic reprogramming of M2 genes. This M2-promoting mechanism is further modulated by a high αKG/succinate ratio, whereas a low ratio strengthens the proinflammatory phenotype in classically activated (M1) macrophages. As such, αKG contributes to endotoxin tolerance after M1 activation. This study reveals new mechanistic regulations by which glutamine metabolism tailors the immune responses of macrophages through metabolic and epigenetic reprogramming.


Subject(s)
Cellular Reprogramming/immunology , Epigenesis, Genetic , Ketoglutaric Acids/immunology , Macrophage Activation/immunology , Macrophages/immunology , Animals , Chromatin Immunoprecipitation , Citric Acid Cycle/immunology , Fatty Acids/metabolism , Gene Expression Profiling , Glutamine/metabolism , Glycolysis/immunology , Ketoglutaric Acids/metabolism , Lipopolysaccharides , Macrophages/metabolism , Metabolomics , Mice , NF-kappa B/immunology , Oxidation-Reduction , Oxidative Phosphorylation , Phenotype , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA , Succinic Acid/metabolism
13.
Oncoimmunology ; 5(4): e1119355, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27141402

ABSTRACT

Glycolytic activity in T cells governs T cell responses by controlling various cellular processes, including proliferation, survival, and effector functions. We recently showed that the tumor microenvironment diminishes T cell antitumor responses by depriving glucose to infiltrating T cells. Moreover, metabolic rewiring tumor-reactive T cells sustain T cell metabolic fitness and antitumor responses.

14.
Schizophr Res ; 140(1-3): 243-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22784684

ABSTRACT

BACKGROUND: Recent schizophrenia research exploring the complicated pathogenesis of schizophrenia has focused on the subjects with at-risk mental states in order to exclude the influence of confounding factors. This study explores 3 sets of auditory-related event potentials in subjects with different risk levels of psychosis. METHODS: Subjects were recruited from the SOPRES study in Taiwan. P50 and N100 using an auditory paired-click paradigm and duration MMN were assessed on 32 first-episode psychosis (FEP), 30 ultra-high risk (UHR), 37 E-BARS (early/broad at-risk mental states) participants and 56 controls. RESULTS: MMN was correlated with neither P50 nor N100, whereas many parameters of the latter two were intercorrelated with each other. Compared to healthy controls, MMNs were significantly lower in all 3 clinical groups (E-BARS, UHR and FEP). A gradient of sensory-gating deficits, manifested by increased P50 ratios (S2/S1) and decreased N100 differences, across different levels of clinical severity was suggested by a linear trend. For the UHR subjects, P50 gating ratio, N100 gating ratio, N100 difference, and N100S2 amplitude might be potential indicators to discriminate converters from non-converters. CONCLUSIONS: By including subjects with E-BARS, our results provide new insight regarding pre-attentive auditory event-related potential in subjects across different risk levels of psychotic disorders. Impaired deviance detection shown by MMNs already exists in people at a pre-psychotic state regardless of clinical severity, while sensory-gating deficits shown by P50/N100 varies depending on the risk levels in prodromal period. Further longitudinal research exploring the relationship between ERPs and subjects with a suspected pre-psychotic state is needed.


Subject(s)
Contingent Negative Variation/physiology , Evoked Potentials, Auditory/physiology , Psychotic Disorders/physiopathology , Sensory Gating/physiology , Acoustic Stimulation , Adolescent , Adult , Electroencephalography , Female , Humans , Male , Psychoacoustics , Psychotic Disorders/diagnosis , Reaction Time , Taiwan , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...