Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Vaccine ; 41(32): 4700-4709, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37353454

ABSTRACT

Pseudomonas aeruginosa (P. aeruginosa) is one of the most prevalent pathogens of bacterial keratitis. Bacterial keratitis is a major cause of blindness worldwide. The rising incidence of multidrug resistance of P. aeruginosa precludes treatment with conventional antibiotics. Herein, we evaluated the protective efficiency and explored the possible underlying mechanism of an X-ray inactivated vaccine (XPa) using a murine P. aeruginosa keratitis model. Mice immunized with XPa exhibit reduced corneal bacterial loads and pathology scores. XPa vaccination induced corneal macrophage polarization toward M2, averting an excessive inflammatory reaction. Furthermore, histological observations indicated that XPa vaccination suppressed corneal fibroblast activation and prevented irreversible visual impairment. The potency of XPa against keratitis highlights its potential utility as an effective and promising vaccine candidate for P. aeruginosa.


Subject(s)
Eye Infections, Bacterial , Keratitis , Pseudomonas Infections , Animals , Mice , Pseudomonas aeruginosa , X-Rays , Vaccines, Inactivated/therapeutic use , Keratitis/prevention & control , Keratitis/drug therapy , Keratitis/microbiology , Cornea/microbiology , Cornea/pathology , Eye Infections, Bacterial/microbiology , Eye Infections, Bacterial/pathology , Eye Infections, Bacterial/prevention & control , Pseudomonas Infections/prevention & control , Mice, Inbred C57BL
2.
Signal Transduct Target Ther ; 6(1): 353, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34593766

ABSTRACT

Pseudomonas aeruginosa infection continues to be a major threat to global public health, and new safe and efficacious vaccines are needed for prevention of infections caused by P. aeruginosa. X-ray irradiation has been used to prepare whole-cell inactivated vaccines against P. aeruginosa infection. However, the immunological mechanisms of X-ray-inactivated vaccines are still unclear and require further investigation. Our previous study found that an X-ray-inactivated whole-cell vaccine could provide protection against P. aeruginosa by boosting T cells. The aim of the present study was to further explore the immunological mechanisms of the vaccine. Herein, P. aeruginosa PAO1, a widely used laboratory strain, was utilized to prepare the vaccine, and we found nucleic acids and 8-hydroxyguanosine in the supernatant of X-ray-inactivated PAO1 (XPa). By detecting CD86, CD80, and MHCII expression, we found that XPa fostered dentritic cell (DC) maturation by detecting. XPa stimulated the cGAS-STING pathway as well as Toll-like receptors in DCs in vitro, and DC finally underwent apoptosis and pyroptosis after XPa stimulation. In addition, DC stimulated by XPa induced CD8+ T-cell proliferation in vitro and generated immunologic memory in vivo. Moreover, XPa vaccination induced both Th1 and Th2 cytokine responses in mice and reduced the level of inflammatory factors during infection. XPa protected mice in pneumonia models from infection with PAO1 or multidrug-resistant clinical isolate W9. Chronic obstructive pulmonary disease (COPD) mice immunized with XPa could resist PAO1 infection. Therefore, a new mechanism of an X-ray-inactivated whole-cell vaccine against P. aeruginosa infection was discovered in this study.


Subject(s)
Membrane Proteins/immunology , Nucleotidyltransferases/immunology , Pseudomonas Infections/immunology , Pseudomonas Vaccines/immunology , Pseudomonas aeruginosa/immunology , Signal Transduction/immunology , Animals , Membrane Proteins/genetics , Mice , Mice, Knockout , Nucleotidyltransferases/genetics , Pseudomonas Infections/genetics , Pseudomonas Vaccines/pharmacology , RAW 264.7 Cells , Signal Transduction/genetics
3.
J Virol ; 95(8)2021 03 25.
Article in English | MEDLINE | ID: mdl-33472935

ABSTRACT

With the fast emergence of serious antibiotic resistance and the lagged discovery of novel antibacterial drugs, phage therapy for pathogenic bacterial infections has acquired great attention in the clinics. However, development of therapeutic phages also faces tough challenges, such as laborious screening and time to generate effective phage drugs since each phage may only lyse a narrow scope of bacterial strains. Identifying highly effective phages with broad host ranges is crucial for improving phage therapy. Here, we isolated and characterized several lytic phages from various environments specific for Pseudomonas aeruginosa by testing their growth, invasion, host ranges, and potential for killing targeted bacteria. Importantly, we identified several therapeutic phages (HX1, PPY9, and TH15) with broad host ranges to lyse laboratory strains and clinical isolates of P. aeruginosa with multi-drug resistance (MDR) both in vitro and in mouse models. In addition, we analyzed critical genetic traits related to the high-level broad host coverages by genome sequencing and subsequent computational analysis against known phages. Collectively, our findings establish that these novel phages may have potential for further development as therapeutic options for patients who fail to respond to conventional treatments.IMPORTANCE Novel lytic phages isolated from various environmental settings were systematically characterized for their critical genetic traits, morphology structures, host ranges against laboratory strains and clinical multi-drug resistant (MDR) Pseudomonas aeruginosa, and antibacterial capacity both in vitro and in mouse models. First, we characterized the genetic traits and compared with other existing phages. Furthermore, we utilized acute pneumonia induced by laboratorial strain PAO1, and W19, an MDR clinical isolate and chronic pneumonia by agar beads laden with FDR1, a mucoid phenotype strain isolated from the sputum of a cystic fibrosis (CF) patient. Consequently, we found that these phages not only suppress bacteria in vitro but also significantly reduce the infection symptom and disease progression in vivo, including lowered bug burdens, inflammatory responses and lung injury in mice, suggesting that they may be further developed as therapeutic agents against MDR P. aeruginosa.

4.
J Antimicrob Chemother ; 75(11): 3248-3259, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32737484

ABSTRACT

BACKGROUND: Antimicrobial peptides are promising alternative antimicrobial agents to combat MDR. DP7, an antimicrobial peptide designed in silico, possesses broad-spectrum antimicrobial activities and immunomodulatory effects. However, the effects of DP7 against Pseudomonas aeruginosa and biofilm infection remain largely unexplored. OBJECTIVES: To assess (i) the antimicrobial activity of DP7 against MDR P. aeruginosa; and (ii) the antibiofilm activity against biofilm infection. Also, to preliminarily investigate the possible antimicrobial mode of action. METHODS: The MICs of DP7 for 104 clinical P. aeruginosa strains (including 57 MDR strains) and the antibiofilm activity were determined. RNA-Seq, genome sequencing and cell morphology were conducted. Both acute and chronic biofilm infection mouse models were established. Two mutants, resulting from point mutations associated with LPS and biofilms, were constructed to investigate the potential mode of action. RESULTS: DP7, at 8-32 mg/L, inhibited the growth of clinical P. aeruginosa strains and, at 64 mg/L, reduced biofilm formation by 43% to 68% in vitro. In acute lung infection, 0.5 mg/kg DP7 exhibited a 70% protection rate and reduced bacterial colonization by 50% in chronic infection. DP7 mainly suppressed gene expression involving LPS and outer membrane proteins and disrupted cell wall structure. Genome sequencing of the DP7-resistant strain DP7R revealed four SNPs controlling LPS and biofilm production. gshA44 and wbpJ139 mutants displayed LPS reduction and motility deficiency, conferring the reduction of LPS and biofilm biomass of strain DP7R and indicating that LPS was a potential target of DP7. CONCLUSIONS: These results demonstrate that DP7 may hold potential as an effective antimicrobial agent against MDR P. aeruginosa and related infections.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Anti-Bacterial Agents/pharmacology , Biofilms , Computer Simulation , Mice , Microbial Sensitivity Tests , Pore Forming Cytotoxic Proteins , Pseudomonas Infections/drug therapy
5.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Article in English | MEDLINE | ID: mdl-32718961

ABSTRACT

This study aimed to evaluate the antimicrobial activity of the novel monosulfactam 0073 against multidrug-resistant Gram-negative bacteria in vitro and in vivo and to characterize the mechanisms underlying 0073 activity. The in vitro activities of 0073, aztreonam, and the combination with avibactam were assessed by MIC and time-kill assays. The safety of 0073 was evaluated using 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and acute toxicity assays. Murine thigh infection and pneumonia models were employed to define in vivo efficacy. A penicillin-binding protein (PBP) competition assay and confocal microscopy were conducted. The inhibitory action of 0073 against ß-lactamases was evaluated by the half-maximal inhibitory concentration (IC50), and resistance development was evaluated via serial passage. The monosulfactam 0073 showed promising antimicrobial activity against Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates producing metallo-ß-lactamases (MBLs) and serine ß-lactamases. In preliminary experiments, compound 0073 exhibited safety both in vitro and in vivo In the murine thigh infection model and the pneumonia models in which infection was induced by P. aeruginosa and Klebsiella pneumoniae, 0073 significantly reduced the bacterial burden. Compound 0073 targeted several PBPs and exerted inhibitory effects against some serine ß-lactamases. Finally, 0073 showed a reduced propensity for resistance selection compared with that of aztreonam. The novel monosulfactam 0073 exhibited increased activity against ß-lactamase-producing Gram-negative organisms compared with the activity of aztreonam and showed good safety profiles both in vitro and in vivo The underlying mechanisms may be attributed to the affinity of 0073 for several PBPs and its inhibitory activity against some serine ß-lactamases. These data indicate that 0073 represents a potential treatment for infections caused by ß-lactamase-producing multidrug-resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , beta-Lactamases/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Aztreonam , Enterobacteriaceae , Mice , Microbial Sensitivity Tests , beta-Lactamase Inhibitors
6.
Front Microbiol ; 11: 558233, 2020.
Article in English | MEDLINE | ID: mdl-33384665

ABSTRACT

Ionizing irradiation kills pathogens by destroying nucleic acids without protein structure destruction. However, how pathogens respond to irradiation stress has not yet been fully elucidated. Here, we observed that Pseudomonas aeruginosa PAO1 could release nucleic acids into the extracellular environment under X-ray irradiation. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray irradiation was observed to induce outer membrane vesicle (OMV) formation in P. aeruginosa PAO1. The size distribution of the OMVs of the irradiated PAO1 was similar to that of the OMVs of the non-irradiated PAO1 according to nanoparticle tracking analysis (NTA). The pyocin-related proteins are involved in OMV production in P. aeruginosa PAO1 under X-ray irradiation conditions, and that this is regulated by the key SOS gene recA. The OMV production was significantly impaired in the irradiated PAO1 Δlys mutant, suggesting that Lys endolysin is associated with OMV production in P. aeruginosa PAO1 upon irradiation stress. Meanwhile, no significant difference in OMV production was observed between PAO1 lacking the pqsR, lasR, or rhlR genes and the parent strain, demonstrating that the irradiation-induced OMV biosynthesis of P. aeruginosa was independent of the Pseudomonas quinolone signal (PQS).

7.
Front Microbiol ; 10: 1175, 2019.
Article in English | MEDLINE | ID: mdl-31191493

ABSTRACT

Antimicrobial peptides (AMPs) provide a promising strategy against infections involving multidrug-resistant pathogens. In previous studies, we designed a short 12 amino acid AMP DP7, using a machine-learning method based on an amino acid activity contribution matrix. DP7 shows broad-spectrum antimicrobial activities both in vitro and in vivo. Here, we aim to investigate the efficacy of DP7 against multidrug resistant Staphylococcus aureus (S. aureus) and reveal the potential mechanisms. First, by measuring the killing kinetics of DP7 against S. aureus and comparing these results with antibiotics with different antimicrobial mechanisms, we hypothesize that DP7, in addition to its known ability to induce cell wall cation damage, can also exert a full killing effect. With FITC-conjugated or biotin-labeled DP7, we tracked DP7's attachment, membrane permeation and subsequent intracellular distribution in S. aureus. These results indicated that the possible targets of DP7 were within the bacterial cells. Transcriptome sequencing of S. aureus exposed to DP7 identified 333 differentially expressed genes (DEGs) influenced by DP7, involving nucleic acid metabolism, amino acid biosynthesis, cell wall destruction and pathogenesis, respectively, indicating the comprehensive killing efficacy of DP7. In addition, the genome sequencing results of the induced DP7 resistant strain S. aureus DP7-R revealed two-point mutations in the mprF and guaA gene. Moreover, in a murine model for MRSA blood stream infection, intravenously treating mice with DP7 showed a good protective effect on mice. In conclusion, DP7 is an effective bactericide for S. aureus, which deserves further study for clinical application and drug development.

8.
Sci Rep ; 8(1): 12632, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30116011

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

9.
Sci Rep ; 8(1): 3928, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29500457

ABSTRACT

DspI, a putative enoyl-coenzyme A (CoA) hydratase/isomerase, was proposed to be involved in the synthesis of cis-2-decenoic acid (CDA), a quorum sensing (QS) signal molecule in the pathogen Pseudomonas aeruginosa (P. aeruginosa). The present study provided a structural basis for the dehydration reaction mechanism of DspI during CDA synthesis. Structural analysis reveals that Glu126, Glu146, Cys127, Cys131 and Cys154 are important for its enzymatic function. Moreover, we show that the deletion of dspI results in a remarkable decreased in the pyoverdine production, flagella-dependent swarming motility, and biofilm dispersion as well as attenuated virulence in P. aeruginosa PA14. This study thus unravels the mechanism of DspI in diffusible signal factor (DSF) CDA biosynthesis, providing vital information for developing inhibitors that interfere with DSF associated pathogenicity in P. aeruginosa.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Enoyl-CoA Hydratase/metabolism , Fatty Acids, Monounsaturated/metabolism , Gene Expression Regulation, Enzymologic , Pseudomonas aeruginosa/metabolism , Quorum Sensing , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cell Movement , Diffusion , Enoyl-CoA Hydratase/chemistry , Enoyl-CoA Hydratase/genetics , Fimbriae, Bacterial/physiology , Flagella/physiology , Models, Molecular , Protein Conformation , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/pathogenicity , Sequence Homology , Signal Transduction , Structure-Activity Relationship , Virulence
10.
Bioorg Med Chem Lett ; 28(4): 834-838, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29402745

ABSTRACT

Staphylococcus aureus is a major and dangerous human pathogen that causes a range of clinical manifestations of varying severity, and is the most commonly isolated pathogen in the setting of skin and soft tissue infections, pneumonia, suppurative arthritis, endovascular infections, foreign-body associated infections, septicemia, osteomyelitis, and toxic shocksyndrome. Honokiol, a pharmacologically active natural compound derived from the bark of Magnolia officinalis, has antibacterial activity against Staphylococcus aureus which provides a great inspiration for the discovery of potential antibacterial agents. Herein, honokiol derivatives were designed, synthesized and evaluated for their antibacterial activity by determining the minimum inhibitory concentration (MIC) against S. aureus ATCC25923 and Escherichia coli ATCC25922 in vitro. 7c exhibited better antibacterial activity than other derivatives and honokiol. The structure-activity relationships indicated piperidine ring with amino group is helpful to improve antibacterial activity. Further more, 7c showed broad spectrum antibacterial efficiency against various bacterial strains including eleven gram-positive and seven gram-negative species. Time-kill kinetics against S. aureus ATCC25923 in vitro revealed that 7c displayed a concentration-dependent effect and more rapid bactericidal kinetics better than linezolid and vancomycin with the same concentration. Gram staining assays of S. aureus ATCC25923 suggested that 7c could destroy the cell walls of bacteria at 1×MIC and 4×MIC.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biphenyl Compounds/pharmacology , Lignans/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/chemistry , Cell Wall/drug effects , Cyclization , Drug Design , Escherichia coli/drug effects , Kinetics , Lignans/chemical synthesis , Lignans/chemistry , Linezolid/pharmacology , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Vancomycin/pharmacology
11.
Curr Microbiol ; 72(2): 152-158, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26542531

ABSTRACT

Riemerella anatipestifer (R. anatipestifer) is among the most prevalent duck pathogens, causing acute or chronic septicemia characterized by serositis. Riemerella anatipestifer can be grown on blood-enriched media, in vitro, which provides a hemin source essential for the sustainment of R. anatipestifer and activation of hemin-uptake systems. However, the genes associated with hemin uptake cannot be identified exclusively through genome sequence analysis. Here, we show that R. anatipestifer encodes outer-membrane hemin-binding proteins. Hemin-binding proteins were identified in the cytoplasm with apparent molecular mass of ~45/37/33/23/20/13 kDa, and outer membrane with apparent molecular mass of ~90/70/60/50/15 kDa by batch affinity chromatography and hemin-blotting assays. Our results indicate that these proteins are involved in hemin acquisition. Finally, hemin-binding assay further showed that R. anatipestifer can bind hemin and this capability is increased in iron limited medium, indicating the hemin-uptake system of R. anatipestifer was regulated by iron.


Subject(s)
Carrier Proteins/analysis , Hemeproteins/analysis , Riemerella/chemistry , Bacterial Outer Membrane Proteins/analysis , Bacterial Outer Membrane Proteins/chemistry , Carrier Proteins/chemistry , Cell Membrane/chemistry , Chromatography, Affinity , Heme-Binding Proteins , Hemeproteins/chemistry , Molecular Weight
12.
PLoS One ; 10(5): e0127506, 2015.
Article in English | MEDLINE | ID: mdl-26017672

ABSTRACT

Riemerella anatipestifer (R. anatipestifer) is one of the most important pathogens in ducks. The bacteria causes acute or chronic septicemia characterized by fibrinous pericarditis and meningitis. The R. anatipestifer genome encodes multiple iron/hemin-uptake systems that facilitate adaptation to iron-limited host environments. These systems include several TonB-dependent transporters and three TonB proteins responsible for energy transduction. These three tonB genes are present in all the R. anatipestifer genomes sequenced so far. Two of these genes are contained within the exbB-exbD-tonB1 and exbB-exbD-exbD-tonB2 operons. The third, tonB3, forms a monocistronic transcription unit. The inability to recover derivatives deleted for this gene suggests its product is essential for R. anatipestifer growth. Here, we show that deletion of tonB1 had no effect on hemin uptake of R. anatipestifer, though disruption of tonB2 strongly decreases hemin uptake, and disruption of both tonB1 and tonB2 abolishes the transport of exogenously added hemin. The ability of R. anatipestifer to grow on iron-depleted medium is decreased by tonB2 but not tonB1 disruption. When expressed in an E. coli model strain, the TonB1 complex, TonB2 complex, and TonB3 protein from R. anatipestifer cannot energize heterologous hemin transporters. Further, only the TonB1 complex can energize a R. anatipestifer hemin transporter when co-expressed in an E. coli model strain.


Subject(s)
Bacterial Proteins/metabolism , Energy Metabolism , Iron/metabolism , Membrane Proteins/metabolism , Riemerella/metabolism , Bacterial Proteins/genetics , Biological Transport/drug effects , Energy Metabolism/drug effects , Escherichia coli/genetics , Escherichia coli/growth & development , Gene Knockout Techniques , Iron Chelating Agents/pharmacology , Membrane Proteins/deficiency , Membrane Proteins/genetics , Riemerella/genetics , Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...