Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Res ; 29(1): 215, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38566152

ABSTRACT

OBJECTIVE: To compare the fluid resuscitation effect of sodium acetate Ringer's solution and sodium bicarbonate Ringer's solution on patients with traumatic haemorrhagic shock. METHOD: We conducted a prospective cohort study in our emergency department on a total of 71 patients with traumatic haemorrhagic shock admitted between 1 December 2020 and 28 February 2022. Based on the time of admission, patients were randomly divided into a sodium bicarbonate Ringer's solution group and sodium acetate Ringer's solution group, and a limited rehydration resuscitation strategy was adopted in both groups. General data were collected separately, and the patients' vital signs (body temperature, respiration, blood pressure and mean arterial pressure (MAP)), blood gas indices (pH, calculated bicarbonate (cHCO3-), partial pressure of oxygen (PaO2), partial pressure of carbon dioxide (pCO2) and clearance of lactate (CLac)), shock indices, peripheral platelet counts, prothrombin times and plasma fibrinogen levels were measured and compared before and 1 h after resuscitation. RESULTS: The post-resuscitation heart rate of the sodium bicarbonate Ringer's solution group was significantly lower than that of the sodium acetate Ringer's solution group (p < 0.05), and the MAP was also significantly lower (p < 0.05). The patients in the sodium bicarbonate Ringer's solution group had significantly higher pH, cHCO3- and PaO2 values and lower pCO2 and CLac values (p < 0.05) than those in the sodium acetate Ringer's solution group, and the post-resuscitation peripheral platelet counts and fibrinogen levels were significantly higher, with shorter plasma prothrombin times and smaller shock indices (p < 0.001). CONCLUSION: Sodium bicarbonate Ringer's solution is beneficial for maintaining MAP at a low level after resuscitation. The use of sodium bicarbonate Ringer's solution in limited fluid resuscitation has positive results and is of high clinical value.


Subject(s)
Ringer's Solution , Shock, Hemorrhagic , Humans , Fibrinogen , Hemorrhage , Prospective Studies , Resuscitation/methods , Ringer's Solution/therapeutic use , Shock, Hemorrhagic/drug therapy , Sodium Acetate , Sodium Bicarbonate
2.
Sci Total Environ ; 912: 168749, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38007120

ABSTRACT

Rehabilitation of degraded soil health using high-performance and sustainable measures are urgently required for restoring soil primary productivity and mitigating greenhouse gas (GHG) emission of coastal ecosystems. However, the effect of livestock manure derived hydrochar on GHG emission and plant productivity in the coastal salt-affected soils, one of blue carbon (C) ecosystems, was poorly understood. Therefore, a cattle manure hydrochar (CHC) produced at 220 °C was prepared to explore its effects and mechanisms on CH4 and N2O emissions and tomato growth and fruit quality in a coastal soil in comparison with corresponding hydrochars derived from plant straws, i.e., sesbania straw hydrochars (SHC) and reed straw hydrochars (RHC) using a 63-day soil column experiment. The results showed that CHC posed a greater efficiency in reducing the global warming potential (GWP, 54.6 % (36.7 g/m2) vs. 45.5-45.6 % (22.2-30.6 g/m2)) than those of RHC and SHC. For the plant growth, three hydrochars at 3 % (w/w) significantly increased dry biomass of tomato shoot and fruit by 12.4-49.5 % and 48.6-165 %, respectively. Moreover, CHC showed the highest promotion effect on shoot and fruit dry biomass of tomato, followed by SHC ≈ RHC. Application of SHC, CHC and RHC significantly elevated the tomato sweetness compared with CK, with the order of CHC (54.4 %) > RHC (35.6 %) > SHC (22.1 %). Structural equation models revealed that CHC-depressed denitrification and methanogen mainly contributed to decreased GHG emissions. Increased soil phosphorus availability due to labile phosphorus supply from CHC dominantly accounted for elevated tomato growth and fruit production. Comparably, SHC-altered soil properties (e.g., decreased pH and increased total carbon content) determined variations of GHG emission and tomato growth. The findings provide the high-performance strategies to enhance soil primary productivity and mitigate GHG emissions in the blue C ecosystems.


Subject(s)
Greenhouse Gases , Solanum lycopersicum , Cattle , Animals , Soil , Greenhouse Gases/analysis , Manure , Ecosystem , Carbon Dioxide/analysis , Nitrous Oxide/analysis , Methane/analysis , Fertilizers/analysis , Carbon , Phosphorus , Agriculture/methods
3.
Sci Total Environ ; 880: 163088, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36996986

ABSTRACT

Remediation of soils pollution caused by dinotefuran, a chiral pesticide, is indispensable for ensuring human food security. In comparison with pyrochar, the effect of hydrochar on enantioselective fate of dinotefuran, and antibiotic resistance genes (ARGs) profiles in the contaminated soils remain poorly understood. Therefore, wheat straw hydrochar (SHC) and pyrochar (SPC) were prepared at 220 and 500 °C, respectively, to investigate their effects and underlying mechanisms on enantioselective fate of dinotefuran enantiomers and metabolites, and soil ARG abundance in soil-plant ecosystems using a 30-day pot experiment planted with lettuce. SPC showed a greater reduction effect on the accumulation of R- and S-dinotefuran and metabolites in lettuce shoots than SHC. This was mainly resulted from the lowered soil bioavailability of R- and S-dinotefuran due to adsorption/immobilization by chars, together with the char-enhanced pesticide-degrading bacteria resulted from increased soil pH and organic matter content. Both SPC and SHC efficiently reduced ARG levels in soils, owing to lowered abundance of ARG-carrying bacteria and declined horizontal gene transfer induced by decreased dinotefuran bioavailability. The above results provide new insights for optimizing char-based sustainable technologies to mitigate pollution of dinotefuran and spread of ARGs in agroecosystems.


Subject(s)
Pesticides , Soil , Humans , Soil/chemistry , Anti-Bacterial Agents/pharmacology , Lactuca , Triticum , Ecosystem , Stereoisomerism , Drug Resistance, Microbial/genetics , Bacteria/genetics , Soil Microbiology , Genes, Bacterial
4.
Sci Total Environ ; 833: 155183, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35421479

ABSTRACT

Biochar (i.e., pyrochar and hydrochar) application is a promising strategy to improve soil quality and productivity. However, the comparison of biochars with different carbonization methods and feedstocks for the plant growth in the coastal salt-affected soil remains limited. In this study, a 30-day microcosmic experiment was conducted to compare the effects of pyrochars and hydrochars derived from reed straw (RPC and RHC) and cow manure (CPC and CHC) on the peanut (Arachis hypogaea L.) seedling growth in a coastal salt-affected soil of Yellow River Delta, China. The results showed that RPC, CHC and CPC significantly elevated fresh shoot weight by 67.77%-89.37%, whereas the RHC amendment showed little effect. The malondialdehyde contents in peanut seedling leaves were significantly declined by 25.28%-35.51% with pyrochar and hydrochar amendments, which might be associated with the enhanced proline contents and K/Na ratios. The stimulation of certain phytohormones (i.e., indole-3-acetic acid, zeatin riboside, gibberellic acid 3) in peanut seedlings with pyrochar and hydrochar amendments might be attributed to the growth enhancement. RPC, CPC and CHC improved the soil properties and fertility such as cation-exchange capacity (CEC), total nitrogen, and available potassium and water holding capacity (WHC) of the coastal salt-affected soil. However, RHC not only significantly decreased soil CEC and WHC, but also increased soil exchangeable sodium percentage. The abundances of soil beneficial bacteria, such as f_Gemmatimonadacea, Sphingomonas, Blastococcus and Lysobacter were enhanced by RPC, CHC and CPC amendments, which were mainly associated with the increased WHC and CEC. Fungal community was less sensitive to pyrochar and hydrochar amendments than bacterial community according to the relative abundance and diversity, and beneficial fungi, such as Oidiodendron and Sarocladium were enriched in the CHC soil. Overall, the application of RPC, CHC and CPC showed greater potentials for the enhancement of peanut growth in a coastal salt-affected soil.


Subject(s)
Seedlings , Soil , Arachis , Charcoal , Manure , Rivers , Water
5.
Chemosphere ; 298: 134191, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35248596

ABSTRACT

Soil acidification has become a major environmental and economic concern worldwide. Char materials (e.g biochar, hydrochar) have attracted considerable attention as soil amendments to restore degraded soil. However, the comparative study of biochar and hydrochar on plant growth in acidified soil is limited. In this study, a microcosmic experiment was used to compare the effect of biochar and hydrochar from cow manure (CBC, CHC) and reed straw (RBC, RHC) on the growth of lettuce in the acidified soil. CBC and RHC significantly increased and decreased the biomass of lettuce by 18.7% and 32.5% in the acidified soil, respectively. The increase of the lettuce growth by CBC primarily attributed to the enhancement of soil properties (SOM and pH) and soil nutrient content (Olsen-P, K, Ca, Mg, Zn, Fe and Mn). Moreover, CBC enhanced the microbial activity and complexity and increased the abundance of beneficial genera like Gemmatimonas, Ramlibacter and Haliangium, which improved soil health and might indirectly benefited the lettuce growth. Our findings highlighted the priority of char materials feedstock and preparation technology for remediating the acidified soil.


Subject(s)
Soil Pollutants , Soil , Animals , Cattle , Charcoal , Lactuca , Manure , Soil/chemistry , Soil Pollutants/analysis
6.
Ecotoxicol Environ Saf ; 209: 111797, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33340958

ABSTRACT

This study evaluated the allelopathy, uptake and accumulation, and potential agricultural and food safety risks of nicotine in broad bean (Vicia faba L.) during seed germination and seedling growth. Nicotine stress has an allelopathic inhibitory effect on seeds and a hormesis effect on germinated seeds and seedlings, which has an enhancement effect (<50 mg kg-1) and an inhibition effect (>100 mg kg-1) on the germinated seeds and an enhancement effect (<100 mg kg-1) and an inhibition effect (>200 mg kg-1) on the seedlings. Exogenous nicotine can be absorbed by broad bean roots from nicotine-contaminated soil and accumulated in the main organs of the seedlings, especially the leaves, which exceeded the maximum residue level (0.03 mg kg-1 DW) at 50 mg kg-1. Moreover, nicotine resulted in a bitter taste in the edible broad bean leaves, disrupting the balance of basic nutritional properties, decreasing sucrose, and increasing bitter substances such as choline and procyanidin. These results demonstrated that residual nicotine in the soil not only poses potential risks to sustainable agricultural development but also a food safety risk for consumers. The present study provides insight into the potential risks of nicotine in agroecosystems.


Subject(s)
Germination/drug effects , Nicotine/toxicity , Soil Pollutants/toxicity , Vicia faba/physiology , Allelopathy , Fabaceae , Plant Leaves/chemistry , Plant Roots , Seedlings/drug effects , Seeds/growth & development , Soil
7.
Sci Rep ; 9(1): 12499, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31467316

ABSTRACT

Studying the obstacles associated with continuous cropping is necessary for sustainable agricultural production. Phenolic acids play an important role in continuous cropping systems, although their mechanism of action in these systems remains unclear. Using High-performance Liquid Chromatography, we characterized the changes in phenolic acid contents in soils that had been continuously cropped with tobacco for different time periods and evaluated the interactions between soil physicochemical properties, bacterial community structure and diversity, and phenolic acids. Prolonged continuous cropping was associated with a significant increase in the content of phenolic acids and a significant decrease in soil pH and bacterial diversity. A significant negative correlation between pH and phenolic acids content was observed, suggesting that soil acidification potentially leads to the accumulation of phenolic acids. The Mantel test indicated that phenolic acids were positively associated with relative bacterial abundance (R = 0.480, P < 0.01), signifying that the accumulation of phenolic acids is a potential factor leading to changes in bacterial community structure. Continuous cropping lowered the soil pH, which stimulated phenolic acid accumulation and consequently altered the bacterial community structure and diversity, ultimately impacting tobacco plant growth.


Subject(s)
Bacteria/isolation & purification , Hydroxybenzoates/pharmacology , Nicotiana/growth & development , Soil Microbiology , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Biodiversity , Hydrogen-Ion Concentration , Hydroxybenzoates/analysis , Hydroxybenzoates/metabolism , Microbiota , Phylogeny , Soil/chemistry , Nicotiana/chemistry , Nicotiana/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...