Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
CNS Neurosci Ther ; 27(12): 1483-1492, 2021 12.
Article in English | MEDLINE | ID: mdl-34605602

ABSTRACT

AIMS: Secondary gliosarcoma (SGS) rarely arises post treatment of primary glioblastoma multiforme (GBM), and contains gliomatous and sarcomatous components. The origin and clonal evolution of SGS sarcomatous components remain uncharacterized. Therapeutic radiation is mutagenic and can induce sarcomas in patients with other tumor phenotypes, but possible causal relationships between radiotherapy and induction of SGS sarcomatous components remain unexplored. Herein, we investigated the clonal origin of SGS in a patient with primary GBM progressing into SGS post-radiochemotherapy. METHODS: Somatic mutation profile in GBM and SGS was examined using whole-genome sequencing and deep-whole-exome sequencing. Mutation signatures were characterized to investigate relationships between radiochemotherapy and SGS pathogenesis. RESULTS: A mutation cluster containing two founding mutations in tumor-suppressor genes NF1 (variant allele frequency [VAF]: 50.0% in GBM and 51.1% in SGS) and TP53 (VAF: 26.7% in GBM and 50.8% in SGS) was shared in GBM and SGS. SGS exhibited an overpresented C>A (G>T) transversion (oxidative DNA damage signature) but no signature 11 mutations (alkylating-agents - exposure signature). Since radiation induces DNA lesions by generating reactive oxygen species, the mutations observed in this case of SGS were likely the result of radiotherapy rather than chemotherapy. CONCLUSIONS: Secondary gliosarcoma components likely have a monoclonal origin, and the clone possessing mutations in NF1 and TP53 was likely the founding clone in this case of SGS.


Subject(s)
Brain Neoplasms , Clonal Evolution/genetics , Glioblastoma , Gliosarcoma , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Female , Glioblastoma/genetics , Glioblastoma/pathology , Gliosarcoma/genetics , Gliosarcoma/secondary , Humans , Middle Aged
2.
PLoS One ; 5(12): e14233, 2010 Dec 06.
Article in English | MEDLINE | ID: mdl-21151909

ABSTRACT

BACKGROUND: The brown planthopper (BPH) Nilaparvata lugens (Stål) is one of the most serious insect pests of rice in Asia. However, little is known about the mechanisms responsible for the development, wing dimorphism and sex difference in this species. Genomic information for BPH is currently unavailable, and, therefore, transcriptome and expression profiling data for this species are needed as an important resource to better understand the biological mechanisms of BPH. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed de novo transcriptome assembly and gene expression analysis using short-read sequencing technology (Illumina) combined with a tag-based digital gene expression (DGE) system. The transcriptome analysis assembles the gene information for different developmental stages, sexes and wing forms of BPH. In addition, we constructed six DGE libraries: eggs, second instar nymphs, fifth instar nymphs, brachypterous female adults, macropterous female adults and macropterous male adults. Illumina sequencing revealed 85,526 unigenes, including 13,102 clusters and 72,424 singletons. Transcriptome sequences larger than 350 bp were subjected to Gene Orthology (GO) and KEGG Orthology (KO) annotations. To analyze the DGE profiling, we mainly compared the gene expression variations between eggs and second instar nymphs; second and fifth instar nymphs; fifth instar nymphs and three types of adults; brachypterous and macropterous female adults as well as macropterous female and male adults. Thousands of genes showed significantly different expression levels based on the various comparisons. And we randomly selected some genes to confirm their altered expression levels by quantitative real-time PCR (qRT-PCR). CONCLUSIONS/SIGNIFICANCE: The obtained BPH transcriptome and DGE profiling data provide comprehensive gene expression information at the transcriptional level that could facilitate our understanding of the molecular mechanisms from various physiological aspects including development, wing dimorphism and sex difference in BPH.


Subject(s)
Gene Expression Profiling , Hemiptera/genetics , Hemiptera/metabolism , Animals , Chromosome Mapping , Female , Gene Expression Regulation , Gene Library , Genetic Variation , Male , Models, Biological , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Signal Transduction , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...