ABSTRACT
Hyperglycemia is associated with advanced glycation end products (AGEs). Recently, AGEs were found to cause pancreatic damage, oxidative stress, and hyperglycemia through the AGE receptor. Carboxymethyllysine (CML) is an AGE but whether it induces pancreatic dysfunction remains unclear. Graptopetalum paraguayense, a vegetable consumed in Taiwan, has been used in folk medicine and is an antioxidant that protects against liver damage. We investigated the protective properties of G. paraguayense 95% ethanol extracts (GPEs) against CML-induced pancreatic damage. The results indicated that resveratrol, GPE, and gallic acid (the active compound of GPE) increased insulin synthesis via upregulation of pancreatic peroxisome proliferator activated-receptor-γ (PPARγ) and pancreatic-duodenal homeobox-1 (PDX-1) but inhibited the expression of CML-mediated CCAAT/enhancer binding protein-ß (C/EBPß), a negative regulator of insulin production. Moreover, resveratrol and GPE also strongly activated nuclear factor-erythroid 2-related factor 2 (Nrf2) to attenuate oxidative stress and improve insulin sensitivity in the liver and muscle of CML-injected C57BL/6 mice and resulted in reduced blood glucose levels. Taken together, these findings suggested that GPE and gallic acid could potentially be used as a food supplement to protect against pancreatic damage and the development of diabetes.
Subject(s)
Crassulaceae/chemistry , Hyperglycemia/drug therapy , Lysine/analogs & derivatives , Pancreas/drug effects , Plant Extracts/pharmacology , Stilbenes/pharmacology , Animals , Gallic Acid/analysis , Gallic Acid/pharmacology , Homeodomain Proteins/metabolism , Hyperglycemia/chemically induced , Hyperglycemia/physiopathology , Insulin/blood , Liver/drug effects , Liver/metabolism , Lysine/toxicity , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , PPAR gamma/metabolism , Pancreas/physiopathology , Resveratrol , Taiwan , Trans-Activators/metabolismABSTRACT
Role of inflammation-induced oxidative stress in the pathogenesis and progression of chronic inflammatory airways diseases has received increasing attention in recent years. Nuclear factor erythroid 2-related factor 2 is the primary transcription factor that regulates the expression of antioxidant and detoxifying enzymes. Graptopetalum paraguayense E. Walther, a vegetable consumed in Taiwan, has been used in folk medicine for protection against liver injury through elevating antioxidation. Recently, we found that gallic acid is an active compound of Graptopetalum paraguayense E. Walther, which has been reported to inhibit T-helper 2 cytokines. Currently, we assumed that Graptopetalum paraguayense E. Walther may potentially protect against ovalbumin-induced allergy and airway inflammation. Results demonstrated that Graptopetalum paraguayense E. Walther ethanolic extracts (GPE) clearly inhibited airway inflammation, mucus cell hyperplasia, and eosinophilia in OVA-challenged mice. Additionally, GPE also prevented T-cell infiltration and Th2 cytokines, including interleukin- (IL-)4, IL-5, and IL-13 generations in bronchial alveolar lavage fluid. The adhesion molecules ICAM-1 and VCAM-1 were substantially reduced by GPE treatment mediated by Nrf2 activation. Moreover, GPE attenuated GATA3 expression and inhibited Th2 signals of the T cells. These findings suggested that GPE ameliorated the development of airway inflammation through immune regulation.