Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Chin Med Assoc ; 85(3): 346-357, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35019864

ABSTRACT

BACKGROUND: Diabetes or hypertension contributes to erectile dysfunction (ED). We hypothesized that excess reactive oxygen species (ROS) production evoked by diabetes combined with hypertension may further suppress endothelial nitric oxide (NO) expression/activity and promote oxidative stress in the ED penis. METHODS: Twenty-four adult male Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were divided into four groups: normal WKY, diabetic WKY, normal SHR and diabetic SHR. Intraperitoneal streptozotocin (65 mg/kg) was applied to induce type I diabetes. After 4-week diabetes and/or hypertension induction, we determined the intra-cavernous pressure (ICP) using electrical stimulation of cavernous nerves, intra-cavernosum NO amount using an electrochemical NO probe, and blood ROS using an ultrasensitive chemiluminescence-amplified analyzer. Western blot analysis and immunohistochemistry were used to explore the pathophysiologic mechanisms of inflammation, apoptosis and autophagy in the penis. A novel NO donor, CysaCysd Lu-5 (CCL5, (RCH2CH2S)(R'R"CHCH2S)Fe(NO)2, 1-4 µg), was intravenously administered to these ED rats for evaluating their ICP responses. RESULTS: In the baseline status, the lucigenin- and luminol-amplified blood ROS were significantly enhanced in the diabetic SHR rats vs normal WKY rats. Significantly decreased ICP, eNOS expression and NO amount were found in the normal SHR, diabetic WKY, and diabetic SHR vs normal WKY rats. Intravenous NO donor L-Arginine markedly increased ICP and NO amount, whereas eNOS inhibitor, Nω-Nitro-L-Arginine methyl ester hydrochloride depressed ICP in all four groups. Diabetes and/or hypertension alone increased fibrosis, proinflammatory NF-kB/ICAM-1 expression, mast cell numbers, CD68 expression and infiltration, Caspase 3-mediated apoptosis, Beclin-1/LC3-II-mediated autophagy and mild Nrf-2/HO-1 expression and depressed eNOS expression in the ED penis. The novel NO donor, CCL5, was more efficient than L-arginine to improve diabetes and/or hypertension-induced ED by the significant increase of ICP. CONCLUSION: Diabetes combined with hypertension synergistically exacerbated ED through enhanced oxidative stress, inflammation, apoptosis and autophagy and depressed eNOS activity and NO production.


Subject(s)
Diabetes Mellitus , Erectile Dysfunction , Hypertension , Animals , Apoptosis , Arginine/metabolism , Autophagy , Erectile Dysfunction/complications , Humans , Hypertension/complications , Inflammation , Male , Nitric Oxide , Oxidative Stress , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Reactive Oxygen Species/metabolism
2.
Antioxidants (Basel) ; 9(8)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751309

ABSTRACT

Diabetes exacerbates myocardial ischemia/reperfusion (IR) injury by incompletely understood mechanisms. We explored whether diabetes diminished BAG3/Bcl-2/Nrf-2/HO-1-mediated cardioprotection and overproduced oxidative stress contributing to exaggerated IR injury. Streptozotocin-induced diabetes enhanced hyperglycemia, cardiac NADPH oxidase p22/p67 expression, malondialdehyde amount and leukocyte infiltration, altered the mesenteric expression of 4-HNE, CaSR, p-eNOS and BAG3 and impaired microvascular reactivity to the vasoconstrictor/vasodilator by a wire myography. In response to myocardial IR, diabetes further depressed BAG3/Bcl-2/Nrf-2/HO-1 expression, increased cleaved-caspase 3/poly(ADP-ribose) polymerase (PARP)/TUNEL-mediated apoptosis and exacerbated IR-induced left ventricular dysfunction characterized by further depressed microcirculation, heart rate, left ventricular systolic pressure and peak rate of pressure increase/decrease (±dp/dt) and elevated left ventricular end-diastolic pressure (LVEDP) and Evans blue-2,3,5-triphenyltetrazolium chloride-stained infarct size in diabetic hearts. Our results implicated diabetes exacerbated IR-induced myocardial dysfunction through downregulated BAG3/Bcl-2/Nrf-2/HO-1 expression, increased p22/p67/caspase 3/PARP/apoptosis-mediated oxidative injury and impaired microvascular reactivity.

3.
Thromb Haemost ; 120(2): 329-343, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31785598

ABSTRACT

AIM: Enhancement of thromboxane A2 (TXA2) synthase (TXAS) activity, TXA2 release, and thromboxane prostanoid (TP) receptor activation leads to vasoconstriction and oxidative injury. We explored whether genetic deletion of TXAS/TXA2/TP signalling may reduce renal ischaemia/reperfusion (I/R) injury in mice. MATERIALS AND METHODS: Renal haemodynamics and function were evaluated in TXAS+/+TP+/+ (wild-type, WT), TXAS-/- (TXS-/-), TP-/- and TXAS-/-TP-/- (double knockout, dKO) mice in response to intravenous TXA2 mimetic-U46619 and 45-minute renal ischaemia and 4-hour reperfusion injury. We examined renal TXAS and TP expression, blood urea nitrogen (BUN) and creatinine, reactive oxygen species (ROS) amount, pro-inflammatory cytokines and pathophysiologic mechanisms, including apoptosis, autophagy and pyroptosis under I/R injury. RESULTS: Renal I/R enhanced the levels of TXAS, TP, nuclear factor-κB, nicotinamide adenine dinucleotide phosphate oxidase gp91, Bax/Bcl-2/caspase-3/apoptosis, Beclin-1/LC3-II/autophagy, caspase-1/gasdermin D/interleukin-1ß/pyroptosis, renal thromboxane B2 (TXB2) concentration, ROS amount, plasma BUN, creatinine and TXB2 and decreased renal endothelial nitric oxide synthase expression in WT mice. All these enhanced parameters were significantly decreased in three KO mice. Intravenous U46619 significantly decreased renal microcirculation and enhanced gp91 and Bax/Bcl-2 in WT and TXS-/- but not TP-/- in dKO mice. I/R significantly decreased renal microcirculation in all mice; however, the time for recovery to baseline renal blood flow level was significantly shortened in TXS-/-, TP-/-and dKO mice versus WT mice. Blockade of TXAS/TP signalling attenuated I/R-enhanced pro-inflammatory cytokine profile. CONCLUSION: Blockade of TXAS/TXA2/TP signalling confers renal protection against I/R injury through the actions of anti-oxidation, anti-inflammation, anti-apoptosis, anti-autophagy and anti-pyroptosis.


Subject(s)
Apoptosis , Autophagy , Inflammation , Pyroptosis , Receptors, Thromboxane/genetics , Reperfusion Injury/metabolism , Thromboxane-A Synthase/genetics , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Animals , Cytokines/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microcirculation , Oxidative Stress , Reactive Oxygen Species/metabolism , Temperature , Vasoconstriction
5.
Chin J Physiol ; 62(5): 188-195, 2019.
Article in English | MEDLINE | ID: mdl-31670282

ABSTRACT

We explored the therapeutic potential of intragastric administration of traditional Chinese medicine Glycine tomentella Hayata (I-Tiao-Gung [ITG]) extract and its major component Daidzin on cyclophosphamide (CYP)-induced cystitis, oxidative stress, fibrosis, inflammation, and bladder hyperactivity in rats. Female Wistar rats were divided into control, CYP (200 mg/kg), CYP+ITG (1.17 g/kg/day), and CYP+Daidzin (12.5 mg/kg/day) groups. We measured the voiding function by the transcystometrogram and evaluated the pathology with the hematoxylin and eosin and Masson stain. We determined the bladder reactive oxygen species (ROS) amount by an ultrasensitive chemiluminescence analyzer, the expression of 3-nitrotyrosine (3-NT) and NADPH oxidase 4 (NOX4) by Western blot and the expression of multiple cytokine profiles, including matrix metalloproteinase (MMP)-8 and tissue inhibitor of metalloproteinase (TIMP)-1 through a cytokine array. ITG extract contains 1.07% of Daidzin through high-performance liquid chromatography. The effect of ITG extract and Daidzin in scavenging hydrogen peroxide activity was more efficient than distilled water. CYP-induced higher urination frequency, shorter intercontraction interval, and lower maximal voiding pressure in the bladders and these symptoms were significantly ameliorated in CYP+ITG and CYP+Daidzin groups. The amount of in vivo bladder ROS and the expression of 3-NT and NOX4 expressions were significantly increased in CYP group but were efficiently decreased in the CYP+ITG and CYP+Daidzin groups. CYP-induced fibrosis, hemorrhage, leukocyte infiltration, and edema in the bladders were significantly attenuated in the CYP+ITG and CYP+Daidzin groups. These results suggested that ITG extract and its active component Daidzin effectively improved CYP-induced oxidative stress, inflammation, and fibrosis through inhibiting the MMP-8, TIMP-1, and oxidative stress.


Subject(s)
Cystitis , Animals , Cyclophosphamide , Female , Fibrosis , Glycine , Inflammation , Isoflavones , Oxidative Stress , Plant Extracts , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...