Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38498491

ABSTRACT

The 'Huangguan' pear is one of the high-quality pear cultivars produced in China. However, the bagged fruit of the 'Huangguan' pear often suffers from peel browning spots after rain during their mature period. In this study, in an effort to discover the impact of bagging treatments on the occurrence of peel browning spots and fruit quality, fruits were covered by single-layer, two-layer, or triple-layer paper bags six weeks after reaching full bloom. The results showed that the bagged fruits were characterized by smooth surfaces and reduced lenticels compared with the unbagged ones. The unbagged and the two-layer bagged fruits had yellow/green peels, while the single- and triple-layer bagged ones had yellow/white peels. Compared with the unbagged fruits, the bagged fruits had higher vitamin C (Vc) contents and values of peel color indexes L and a and lower soluble solid contents (SSCs), titratable acid (TA) contents, absorbance index differences (IAD), and b values. Additionally, the triple-layer bagged group was superior to other groups in terms of fruit quality, but it also had the maximum incidence of peel browning spots. Before and after the appearance of peel browning spots, the bagged fruits had smoother and thinner cuticles compared with the unbagged ones. Furthermore, the triple-layer bagged fruits had minimum lignin contents and maximum phenolic contents in their peels, with minimum activity of lignin synthesis-related enzymes such as phenylalanine ammonia lyase (PAL), peroxidase (POD), and polyphenol oxidase (PPO), as well as minimum expressions of relevant genes such as cinnamyl alcohol dehydrogenase (CAD), cinnamoyl CoA reductase (CCR), 4-coumarate: coenzyme A ligase (4CL6), and cinnamate 4-hydroxylase (C4H1). It was deduced that POD activity and the relative expressions of CAD9, CCR3, CCR4, and CCR5 may play key roles in the occurrence of peel browning spots. In summary, lignin synthesis affected the incidence of peel browning spots in bagged 'Huangguan' pears. This study provides a theoretical basis for understanding the incidence of peel browning spots in 'Huangguan' pears.

2.
Plant Dis ; : PDIS08231528RE, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38115565

ABSTRACT

Postharvest fruit rot caused by pathogens is a serious problem in the pear industry. This study investigated the fungal diversity and main pathogens and identified a new pathogen in the stored 'Huangguan' pear (Pyrus bretschneideri Rehd.), the dominant pear variety in northern China. We sampled 20 refrigeration houses from five main producing regions in Hebei Province and used Illumina sequencing technology to detect the fungal composition. Alternaria (56.3%) was the most abundant fungus, followed by Penicillium (9.2%) and Monilinia (6.2%). We also isolated and identified nine strains of Alternaria and four strains of Penicillium. Moreover, we observed a new postharvest fruit disease in 'Huangguan' pear caused by Stemphylium eturmiunum, which was confirmed by phylogenetic analysis by combining the sequences of three conserved genes, including internal transcribed spacer, gapdh, and calmodulin. This study marks the first documentation of S. eturmiunum causing fruit rot in 'Huangguan' pears, offering valuable insights for identifying and controlling this newly identified postharvest disease.

3.
Foods ; 12(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37238797

ABSTRACT

(1) Background: Organic food produced in environmentally friendly farming systems has become increasingly popular. (2) Methods: We used a DNA metabarcoding approach to investigate the differences in the microbial community between organic and conventional 'Huangguan' pear fruit; and (3) Results: Compared to a conventional orchard, the fruit firmness in the organic orchard had significantly lowered after 30 days of shelf-life storage at 25 °C, and the soluble solids content (SSC), titratable acid (TA), and decay index were higher. There were differences in the microbial diversity between organic and conventional orchards pears. After 30 days of storage, Fusarium and Starmerella became the main epiphytic fungi in organic fruits, while Meyerozyma was dominant in conventional fruits. Gluconobacter, Acetobacter, and Komagataeibacter were dominant epiphytic bacteria on pears from both organic and conventional orchards after a 30-day storage period. Bacteroides, Muribaculaceae, and Nesterenkonia were the main endophytic bacteria throughout storage. There was a negative correlation between fruit firmness and decay index. Moreover, the abundance of Acetobacter and Starmerella were positively correlated with fruit firmness, while Muribaculaceae was negatively correlated, implying that these three microorganisms may be associated with the postharvest decay of organic fruit; (4) Conclusions: The difference in postharvest quality and decay in organic and conventional fruits could potentially be attributed to the variation in the microbial community during storage.

4.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36982404

ABSTRACT

'Huangguan' pear (Pyrus bretschneideri Rehd) fruit is susceptible to cold, characterized by developing peel browning spots (PBS) during cold storage. Additionally, ethylene pretreatment reduces chilling injury (CI) and inhibits PBS occurrence, but the mechanism of CI remains unclear. Here, we deciphered the dynamic transcriptional changes during the PBS occurrence with and without ethylene pretreatment via time-series transcriptome. We found that ethylene suppressed the cold-signaling gene expression, thereby decreasing the cold sensitivity of the 'Huangguan' fruit. Moreover, the "Yellow" module closely correlated with PBS occurrence was identified via weighted gene co-expression network analysis (WGCNA), and this module was related to plant defense via Gene Ontology (GO) enrichment analysis. Local motif enrichment analysis suggested that the "Yellow" module genes were regulated by ERF and WRKY transcription factors. Functional studies demonstrated that PbWRKY31 has a conserved WRKY domain, lacks transactivation activity, and localizes in the nucleus. PbWRKY31-overexpressed Arabidopsis were hypersensitive to cold, with higher expression levels of cold signaling and defense genes, suggesting that PbWRKY31 participates in regulating plant cold sensitivity. Collectively, our findings provide a comprehensive transcriptional overview of PBS occurrence and elucidate the molecular mechanism by which ethylene reduces the cold sensitivity of 'Huangguan' fruit as well as the potential role of PbWRKY31 in this process.


Subject(s)
Pyrus , Transcriptome , Pyrus/genetics , Pyrus/metabolism , Ethylenes/pharmacology , Ethylenes/metabolism , Gene Expression Profiling , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Cold Temperature
5.
Foods ; 12(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36981138

ABSTRACT

Fruit ferment is rich in polyphenols, organic acids, enzymes, and other bioactive components, which contribute to their antioxidant ability. In this study, we investigated the effect of the simulated gastric and intestinal digestion in vitro on the total phenolic content (TPC), total flavonoid content (TFC), phenolic components content, organic acid content, protease activity, superoxide dismutase (SOD) activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (DPPH-RSA), hydroxyl (·OH) radical scavenging activity (·OH-RSA), and total reducing capacity in 'Xuehua' pear (Pyrus bretschneideri Rehd) ferment. The result showed that the TPC, TFC, protease activity, and phenolic components such as arbutin, protocatechuic acid, malic acid, and acetic acid showed a rising trend during the simulated gastric digestion in 'Xuehua' pear ferment, and these components might contribute to the increasing of ·OH-RSA and total reducing capacity. The SOD activity and epicatechin content showed an increasing trend at first and then a decreasing trend, which was likely associated with DPPH-RSA. During in vitro-simulated intestinal digestion, the majority of evaluated items reduced, except for protease activity, quercetin, and tartaric acid. The reason for the decreasing of bio-accessibility resulted from the inhibition of the digestive environment, and the transformation between substances, such as the conversion of hyperoside to quercetin. The correlation analysis indicated that the antioxidant capacity of 'Xuehua' pear ferment was mainly affected by its bioactive compounds and enzymes activity as well as the food matrices and digestive environment. The comparison between the digestive group with and without enzymes suggested that the simulated gastrointestinal digestion could boost the release and delay the degradation of phenolic components, flavonoids, and organic acid, protect protease and SOD activity, and stabilize DPPH-RSA, ·OH-RSA, and total reducing capacity in 'Xuehua' pear ferment; thus, the 'Xuehua' pear ferment could be considered as an easily digestible food.

6.
Plants (Basel) ; 12(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36840243

ABSTRACT

Ethylene is positively correlated with the anthocyanin accumulation in postharvest plum fruit, but the regulation mechanism has not been fully clarified. In this work, the 'Friar' plum fruit under different storage temperatures (0, 10 and 25 °C) and treatments (100.0 µL L-1 ethylene and 1.0 µL L-1 1-MCP) were applied to study the relationship between anthocyanin accumulation and ethylene signal pathway. The fruits stored at 10 °C had higher ethylene production rate and more anthocyanin in flesh than those stored at 0 °C and 25 °C. Ten ethylene biosynthesis associated genes and forty-one ethylene signal transduction related genes were obtained from the previous transcriptome data. Among them, the expression levels of ethylene biosynthesis associated genes (PsACS1, PsACS4 and PsACO1), and ethylene signal transduction related genes (PsERS1s, PsETR2, PsERF1a, and PsERF12) were markedly higher in the fruits stored at 10 °C than those at 0 °C and 25 °C. Exogenous ethylene treatment enhanced while 1-MCP treatment inhibited the anthocyanin accumulation in the flesh under storage at 10 °C. In addition, exogenous ethylene treatment markedly increased the expression levels of PsACS1, PsACS4, PsACO1, PsETR2, PsERF1a, and PsERF12 in the flesh once it turning red, as well as the anthocyanin biosynthesis related genes (PsPAL, PsCHS, PsF3H, PsDRF, PsANS, PsUFGT and PsMYB10), whereas 1-MCP treatment manifested the contrary effects. Correlation analysis indicated that there was a significant positive correlation between genes expression related to ethylene signal pathway and anthocyanin biosynthesis, except for PsERF11. In conclusion, ethylene signal pathway is involved in the flesh reddening by up-regulating the anthocyanin biosynthesis related genes.

7.
Foods ; 12(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36613402

ABSTRACT

As a traditional folk medicine, pear paste has important nutritional and health effects. The physicochemical properties and antioxidant activities of pear pastes prepared from 23 different cultivars were investigated, including color parameters ( L*, a*, b* and h°), transmittance, pH, titratable acidity (TA), soluble sugar content, total phenolics content (TPC), total flavonoids content (TFC), DPPH and •OH radical scavenging activity (RSA), and ferric reducing antioxidant power (FRAP). It was demonstrated that the physicochemical properties and antioxidant activities of pear pastes from various cultivars differed significantly. Pear cultivars of "Mantianhong", "Xiangshui" and "Anli" possessing higher TPC and TFC exhibited excellent antioxidant activity determined by DPPH RSA, •OH RSA and FRAP, while the lowest TPC and TFC was observed for the cultivars of "Xueqing", "Nansui", "Hongxiangsu", and "Xinli No. 7", which also demonstrated the poor antioxidant activity. Multivariate analyses, including factor and cluster analysis, were used for the quality evaluation and separation of pear pastes based on their physicochemical and antioxidant properties. Factor analysis reduced the above thirteen parameters to final four effective ones, i.e. DPPH RSA, color b*, FRAP and TA, and subsequently these four parameters were used to construct the comprehensive evaluation prediction model for evaluating the quality of pear pastes. The pear pastes could be separated into three clusters and differentiated for the diverse of pear cultivars via cluster analysis. Consistently, "Mantianhong", "Xiangshui" and "Anli" pear with higher quality clustered into one group, in contrast, "Xueqing", "Nansui", "Hongxiangsu", and "Xinli No. 7" with lower quality clustered into the other group. It provided a theoretical method to evaluate the quality of pear paste and may help the fruit processing industry select the more suitable pear cultivars for pear paste making.

8.
PeerJ ; 10: e14328, 2022.
Article in English | MEDLINE | ID: mdl-36340202

ABSTRACT

The surface wax of fruit has a significant effect on abiotic stress and fruit quality. In this study, the composition of the waxes found on fruit surfaces and the related gene expression of three different pear cultivars (Xuehua, Yali, and Yuluxiang) were investigated during cold storage. The results showed that 35 wax compositions were found on the surfaces of the three pear cultivars, mainly including C29 alkane, three fatty acids, two esters, three aldehydes, three fatty alcohols, and three triterpenoids. The largest amount of C29 alkane, three fatty acids and two esters were found in Yuluxiang (YLX) on day 90, while aldehydes with carbons of C30 and C32 were the highest in Yali (YL). Xuehua (XH) showed the largest amount of C22 fatty alcohol on day 180 compared to YLX and YL. Larger amounts of triterpenoids were found in XH and YL when compared to YLX. The expression levels of fifteen wax related genes (LACS1, KCS2, KCS6, FDH, KCS20, GL8, CER10, CER60, LTPG1, LTP4, ABCG12, CER1L, CAC3, CAC3L, and DGAT1L) reached their peak at day 45 in YLX, compared to XH and YL, their expression levels in YLX were higher to different degrees. These results suggest that the different expression patterns of wax-related genes may be closely related to the difference in wax compositions of the surface wax of three pear cultivars.


Subject(s)
Pyrus , Triterpenes , Humans , Fruit/genetics , Pyrus/genetics , East Asian People , Waxes/metabolism , Fatty Acids/metabolism , Aldehydes/metabolism , Triterpenes/metabolism , Fatty Alcohols/metabolism , Alkanes/metabolism , Esters/metabolism , Gene Expression
9.
BMC Microbiol ; 22(1): 239, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36199024

ABSTRACT

BACKGROUND: Fruit bagging is an effective technique for fruit protection in the orchard management. Bagging can create a micro-environment for fruit growth and affect fruit quality during storage, in which the diversity of microorganisms may play an important role. Therefore, various methods including biochemistry, analytical chemistry, and bioinformatics methods were used to reveal the influences of fruit bagging on postharvest fruit quality, physiological characters, decay and surface fungal community of 'Yali' pear fruit were investigated in this study. RESULTS: Fruit bagging significantly decreased the postharvest decay after 15 days of ambient storage. There were no significant differences in fruit firmness, titratable acid and ethylene production rate between the fruit-bagging and non-bagging group after 15 days of storage, while the soluble solids contents (SSC) and respiration rate in non-bagging fruit was significantly higher than that in fruit-bagging after 15 days of storage. Furthermore, the surface microbes of pear were collected and determined by the new generation sequencing technology. The alpha diversity of fungi in non-bagging fruit decreased significantly after 15 days of storage, while there were no significant changes in bagging fruit. Ascomycota and Basidiomycota were the two major phyla detected in the bagging fruit, and the dominant fungal genera were Alternaria (23.7%), Mycosphaerella (17.25%), Vishniacozyma (16.14%), and Aureobasidium (10.51%) after 15 days of storage. For the non-bagging pear, Ascomycota was the only phylum detected, and the dominant genera was Pichia (83.32%) after 15 days of storage. The abundance of Pichia may be regarded as the biomarker to indicate the degree of fruit decay. CONCLUSIONS: This study showed that fruit bagging could significantly reduce postharvest fruit decay and respiration rate of 'Yali' pear. Significant differences were found in fungal composition between bagging and non-bagging pear after storage for 0 or 15 days. Fruit bagging maintained the diversity of fungi on the fruit surface, increased the abundance of non-pathogenic fungi, and even antagonistic fungi such as Aureobasidium, Vishniacozyma, and Mycosphaerella. A reduction in the abundance of pathogenic fungi and incidence of postharvest decay during the storage of 'Yali' pear were also recorded. In conclusion, fruit-bagging changed the fungal diversity on fruit surface of 'Yali' pear, which had significant effect on reducing postharvest fruit decay, and thus prolong the storage period of 'Yali' pears. The future thrust of this study will focus on the isolation of fungi or bacteria from pear fruit surface and identify their roles in causing fruit decay and changing fruit quality during storage.


Subject(s)
Mycobiome , Pyrus , Alternaria , Ethylenes/analysis , Fruit/chemistry , Pyrus/chemistry
10.
Toxins (Basel) ; 14(10)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36287968

ABSTRACT

Mycotoxins are generated by a series of fungal pathogens in postharvest fruit, resulting in serious health threat to consumers and great economic loss to the fruit storage industry. The microbial differences between rotten and healthy fruit during storage and their relationship with mycotoxin production have not been fully studied. In this study, differences in microbial diversity between rotten and healthy fruit after 30 days of storage at ambient temperature were investigated using high-throughput sequencing technology in 'Huangguan' pear (Pyrus bretschneideri Rehd cv. Huangguan) harvested from five different producing regions of Hebei province, China. The bacterial genus Gluconobacter was much more abundant in rotten fruit (76.24%) than that in healthy fruit (32.36%). In addition, Komagataeibacter and Acetobacter were also relatively higher in abundance in rotten fruit. In contrast, bacterial genera Pantoea, Alistipes, Muribaculaceae, Lactobacillus, and Ruminococcaceae_UCG were found to be more abundant in healthy fruit. Fungal genera including Botryosphaeria, Colletotrichum, Valsa, Alternaria, Rosellinia, Fusarium, and Trichothecium were found to be abundant in rotten fruit. The results of principal coordinate analysis (PCoA) showed that there were significant differences in the microbial diversity of different regions. PAT (patulin) was detected in all rotten fruit samples, while tenuazonic acid (TeA), alternariol (AOH), and alternariolmonomethyl ether (AME) were only detected in samples collected from one region (Weixian). Canonical correlation analysis (CCA) and Pearson correlation analysis showed that the abundance of Alistipes and Pantoea were negatively correlated with the contents of PAT, suggesting that bacterial genera Alistipes and Pantoea have potential in reducing mycotoxin production in 'Huangguan' pear.


Subject(s)
Mycotoxins , Patulin , Pyrus , Mycotoxins/analysis , Tenuazonic Acid/analysis , Patulin/analysis , Alternaria , Fruit/microbiology , Ethers
11.
Int J Mol Sci ; 23(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36292939

ABSTRACT

Superficial scald is a postharvest physiological disorder that occurs in pear during and after cold storage. In this study, the superficial scald index; α-farnesene and its oxidation products, conjugated trienols (CTols); phenolic content; and the expression of its related genes were investigated in two different pear cultivars, 'Wujiuxiang' (Pyrus communis L.) and 'Yali' (Pyrus bretschneideri R.), following 115 days of cold storage at 0 °C followed by 7 days of shelf life at 20 °C. The results indicated that the superficial scald occurred after 115 days of cold storage and became more severe during the shelf life of the 'Wujiuxiang' pear, whereas no scald was observed in 'Yali'. The α-farnesene levels increased rapidly at first and then decreased, while the CTols contents increased significantly in 'Wujiuxiang' as compared to 'Yali', and the expression levels of the genes involved in α-farnesene and CTols metabolism (HMGR1, HMGR2, GSTU7, GPX5, and GPX6), as well as the phenolic synthesis (PAL1, PAL2, C4H1, 4CL2, C3H, and ANR) of the peel, were significantly up-regulated at the onset of the superficial scald. In addition, the relative conductivity and contents of catechin and epicatechin were higher, and the expression level of the laccase gene (LAC7) significantly increased with the development of superficial scald, while lower contents of chlorogenic acid, arbutin, and isorhamnetin-3-3-glucoside, as well as the lower expression levels of a phenolic-synthesis-related gene (C4H3) and polyphenol oxidase genes (PPO1 and PPO5), were noticed in 'Wujiuxiang' as compared to 'Yali'. The results indicated that the onset and progression of superficial scald were associated with the accumulation of CTols, cell membrane breakdown, and higher catechin, epicatechin, and rutin contents, as well as the expression of associated genes of the peels of pear fruit.


Subject(s)
Catechin , Pyrus , Pyrus/genetics , Catechin/metabolism , Chlorogenic Acid/metabolism , Arbutin , Laccase/metabolism , Fruit/genetics , Fruit/metabolism , Phenols/metabolism , Catechol Oxidase/metabolism , Rutin/metabolism
12.
Front Plant Sci ; 13: 987240, 2022.
Article in English | MEDLINE | ID: mdl-36119567

ABSTRACT

Superficial scald is a serious physiological disorder in "Yali" pear (Pyrus bretschneideri Rehd. cv. Yali) after long-term cold storage. Changes in superficial scald, ethylene production, α-farnesene and phenylpropane metabolism with associated gene expression in "Yali" pear treated with and without (control) 1-methylcyclopropene (1-MCP) were investigated. Compared with the control group (without 1-MCP), 1-MCP (1.0 µl L-1) significantly lowered the superficial scald index after 180 days of cold storage. During cold storage and shelf life, the contents of α-farnesene, conjugated trienols, chlorogenic acid, and epicatechin in the peel were reduced, while quercetin was enhanced in 1-MCP-treated fruit, and the expression of genes associated with ethylene synthesis (ACS1, ACO1), receptors (ETR2, ERS1) and signal transduction (ERF1), α-farnesene metabolism (AFS1, HMGR2, GST7), phenolic biosynthesis (PAL1, C4H1, C4H2, HCT3, 4CL2, C3H), and oxidases (PPO1, PPO5, and LAC7) were significantly downregulated by 1-MCP. These results suggested that the onset and development of superficial scald was closely related to the ethylene receptor, conjugated trienols, chlorogenic acid and epicatechin and related genes expression in "Yali" pear.

13.
Microbiol Res ; 262: 127110, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35792522

ABSTRACT

Microbial community structure on fruit surface plays an important role in fruit decay during postharvest storage, although the underlying mechanism has not been fully elucidated. Winter jujube (Ziziphus jujuba Miller cv. Dongzao) is a unique fruit resource with high edible and commercial value in China, while postharvest decay has always been a severe problem leading to short shelf life and poor quality of fruit. Ozone treatment is regarded as one of the most effective means to control decay and extend shelf life because of its cost-effective and eco-friendly properties. In the present study, three concentrations of ozone (2.5, 5 and 10 µL L-1) were found to reduce significantly postharvest decay of winter jujube on days 10 and 15, which were produced from Huanghua City, Hebei, China. High-throughput sequencing revealed significant changes in the bacterial and fungal communities in response to the application of ozone treatment, while Didymella, Rhizopus, Alternaria, Phialemoniopsis and Mycosphaerella were found to be the most abundant in fungi, and Methylobacterium, Pseudomonas, Pantoea, Sphingomonas and Gluconobacter being the most abundant in bacteria. Results of linear discriminant analysis (LDA) effect size (LEfSe) indicated that ozone treatments considerably reduced the abundance of Rhizopus and Gluconobacter on the surface of winter jujube fruit. Furthermore, Pearson correlation analysis showed that Rhizopus was positively correlated with Gluconobacter (r = 0.97) while negatively correlated with Didymella (r = -0.96). By predicting the metabolic function, ozone may inhibit metabolic pathways including nucleoside and nucleotide biosynthesis, amino acid biosynthesis, fatty acid and lipid degradation, respiration, and electron transfer, thereby reducing the incidence of fruit decay and maintaining the firmness of winter jujube fruit.


Subject(s)
Microbiota , Ozone , Ziziphus , Alternaria/physiology , Fruit/microbiology , Ozone/analysis , Ozone/pharmacology , Ziziphus/chemistry , Ziziphus/microbiology
14.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35563188

ABSTRACT

Red-skinned pears are favored by people for their attractive appearance and abundance of anthocyanins. However, the molecular basis of anthocyanin biosynthesis in red pears remains elusive. Here, a comprehensive transcriptome analysis was conducted to explore the potential regulatory mechanism of anthocyanin biosynthesis in 'Red Zaosu' pear (Pyrus pyrifolia × Pyrus communis). Gene co-expression analysis and transcription factor mining identified 263 transcription factors, which accounted for 6.59% of the total number of transcription factors in the pear genome in two gene modules that are highly correlated with anthocyanin biosynthesis. Clustering, gene network modeling with STRING-DB, and local motif enrichment analysis (CentriMo) analysis suggested that PpPIF8 may play a role in anthocyanin biosynthesis. Furthermore, eight PIFs were identified in the pear genome, of which only PpPIF8 was rapidly induced by light. Functional studies showed that PpPIF8 localizes in the nucleus and is preferentially expressed in the tissue of higher levels of anthocyanin. The overexpression of PpPIF8 in pear peel and pear calli promotes anthocyanin biosynthesis and upregulates the expression of anthocyanin biosynthesis genes. Yeast-one hybrid and transgenic analyses indicated that PpPIF8 binds to the PpCHS promoter to induce PpCHS expression. The positive effect of PpPIF8 on anthocyanin biosynthesis is different from previously identified negative regulators of PyPIF5 and MdPIF7 in pear and apple. Taken together, our data not only provide a comprehensive view of transcription events during the coloration of pear peel, but also resolved the regulatory role of PpPIF8 in the anthocyanin biosynthesis pathway.


Subject(s)
Pyrus , Anthocyanins/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Pyrus/metabolism , RNA-Seq , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Front Plant Sci ; 13: 1082041, 2022.
Article in English | MEDLINE | ID: mdl-36714764

ABSTRACT

'Yuluxiang' pear (Pyrus sinkiangensis) commonly develop a greasy coating and yellowing during storage. In this study, 1.0 µL L-1 1-methylcyclopropene (1-MCP) was applied to 'Yuluxiang' pear to investigate its effects on fruit quality, peel wax composition, greasiness index, chlorophyll content, and the expression pattern of related genes during storage at ambient temperature (25°C). The results showed that 1-MCP treatment maintained higher fruit firmness and chlorophyll content, decreased respiration rate, and postponed the peak of ethylene production rate, lowered the greasy index of the peel. The main wax components of peel accumulated during storage, the principal ones being alkenes (C23, C25, and C29), fatty acids (C16, C18:1, and C28), aldehydes (C24:1, C26:1, and C28:1), and esters (C22:1 fatty alcohol-C16 fatty acid, C22:1 fatty alcohol-C18:1 fatty acid, C22 fatty alcohol-C16 fatty acid, C22 fatty alcohol-C18:1 fatty acid, C24:1 fatty alcohol-C18:1 fatty acid, and C24 fatty alcohol-C18:1 fatty acid), and were reduced by 1-MCP. 1-MCP also decreased the expression of genes associated with ethylene biosynthesis and signal transduction (ACS1, ACO1, ERS1, ETR2, and ERF1), chlorophyll breakdown (NYC1, NOL, PAO, PPH, and SGR), and wax accumulation (LACS1, LACS6, KCS1, KCS2, KCS4, KCS10L, KCS11L, KCS20, FDH, CER10, KCR1, ABCG11L, ABCG12, ABCG21L, LTPG1, LTP4, CAC3, CAC3L, and DGAT1L). There were close relationships among wax components (alkanes, alkenes, fatty acids, esters, and aldehydes), chlorophyll content, greasiness index, and level of expression of genes associated with wax synthesis and chlorophyll breakdown. These results suggest that 1-MCP treatment decreased the wax content of 'Yuluxiang' pear and delayed the development of peel greasiness and yellowing by inhibiting the expression of genes related to the ethylene synthesis, signal transduction, wax synthesis, and chlorophyll degradation.

16.
BMC Plant Biol ; 21(1): 576, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34872513

ABSTRACT

BACKGROUND: Flesh is prone to accumulate more anthocyanin in postharvest 'Friar' plum (Prunus salicina Lindl.) fruit stored at an intermediate temperature. However, little is known about the molecular mechanism of anthocyanin accumulation regulated by storage temperature in postharvest plum fruit. RESULTS: To reveal the potential molecular regulation mechanism of anthocyanin accumulation in postharvest 'Friar' plum fruit stored at different temperatures (0 °C, 10 °C and 25 °C), the fruit quality, metabolite profile and transcriptome of its flesh were investigated. Compared to the plum fruit stored at 0 °C and 25 °C, the fruit stored at 10 °C showed lower fruit firmness after 14 days and reduced the soluble solids content after 21 days of storage. The metabolite analysis indicated that the fruit stored at 10 °C had higher contents of anthocyanins (pelargonidin-3-O-glucoside, cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside and quercetin-3-O-rutinose), quercetin and sucrose in the flesh. According to the results of weighted gene coexpression correlation network analysis (WGCNA), the turquoise module was positively correlated with the content of anthocyanin components, and flavanone 3-hydroxylase (F3H) and chalcone synthase (CHS) were considered hub genes. Moreover, MYB family transcription factor APL (APL), MYB10 transcription factor (MYB10), ethylene-responsive transcription factor WIN1 (WIN1), basic leucine zipper 43-like (bZIP43) and transcription factor bHLH111-like isoform X2 (bHLH111) were closely related to these hub genes. Further qRT-PCR analysis verified that these transcription factors were specifically more highly expressed in plum flesh stored at 10 °C, and their expression profiles were significantly positively correlated with the structural genes of anthocyanin synthesis as well as the content of anthocyanin components. In addition, the sucrose biosynthesis-associated gene sucrose synthase (SS) was upregulated at 10 °C, which was also closely related to the anthocyanin content of plum fruit stored at 10 °C. CONCLUSIONS: The present results suggest that the transcription factors APL, MYB10, WIN1, bZIP43 and bHLH111 may participate in the accumulation of anthocyanin in 'Friar' plum flesh during intermediate storage temperatures by regulating the expression of anthocyanin biosynthetic structural genes. In addition, the SS gene may play a role in anthocyanin accumulation in plum flesh by regulating sucrose biosynthesis.


Subject(s)
Anthocyanins/metabolism , Food Storage , Fruit , Gene Expression Regulation, Plant , Prunus/genetics , Prunus/metabolism , Fruit/genetics , Fruit/metabolism , Plant Proteins/metabolism , Sucrose/metabolism , Temperature , Transcription Factors/metabolism
17.
Front Microbiol ; 12: 729014, 2021.
Article in English | MEDLINE | ID: mdl-34512605

ABSTRACT

Pathogen-induced decay is one of the most common causes of fruit loss, resulting in substantial economic loss and posing a health risk to humans. As an ethylene action inhibitor, 1-methylcyclopropene (1-MCP) can significantly reduce fruit decay, but its effect on fruit pathogens remains unclear. Herein, the change in microbial community structure was analyzed using the high-throughput sequencing technology, and characteristics related to fruit quality were determined after 1-MCP (1.0 M l L-1) treatment in "Doyenne du Comiceis" pear fruit during storage at ambient temperature. Overall, 1-MCP was highly effective in reducing disease incidence and induced multiple changes of the fungal and bacterial microbiota. At day 15, the microbial diversity of fungi or bacteria was reduced significantly in the control fruit (non-treated with 1-MCP), which had the most severe decay incidence. For fungi, in addition to Alternaria being the most abundant in both 1-MCP treatment (59.89%) and control (40.18%), the abundances of Botryosphaeria (16.75%), Penicillium (8.81%), and Fusarium (6.47%) increased significantly with the extension of storage time. They became the primary pathogens to cause fruit decay in control, but they were markedly decreased in 1-MCP treatment, resulting in reduced disease incidence. For bacteria, the abundance of Gluconobacter (50.89%) increased dramatically at day 15 in the control fruit, showing that it also played a crucial role in fruit decay. In addition, Botryosphaeria, Fusarium fungi, and Massilia, Kineococcus bacteria were identified as biomarkers to distinguish 1-MCP treatment and control using Random Forest analysis. The redundancy analysis (RDA) result showed that the amount of Botryosphaeria, Penicillium, and Fusarium were positively correlated with disease incidence and respiration rate of pear fruits while negatively correlated with fruit firmness. This investigation is the first comprehensive analysis of the microbiome response to 1-MCP treatment in post-harvest pear fruit, and reveals the relationship between fruit decay and microbial composition in pear fruit.

18.
J Sci Food Agric ; 99(5): 2438-2446, 2019 Mar 30.
Article in English | MEDLINE | ID: mdl-30362118

ABSTRACT

BACKGROUND: Surface wax protects fruit from dehydration and pathogen erosion during storage. The surface wax of pears changes greatly during storage. In this work, the effect of ethylene action inhibitor 1-methylcyclopropene on wax accumulation and related gene expression in 'Hongxiangsu' pears during cold storage was investigated. RESULTS: The alkanes, alkenes, fatty acids, esters, aldehydes and triterpenoids on the fruit surface accumulated and peaked at day 180, but fatty alcohols decreased before day 90 and then increased in the control. Treatment with 1-MCP (1.0 µL L-1 ) reduced surface wax at day 180 of storage. Compared with the control, the wax crystals became smaller in 1-MCP-treated fruit on days 90 and 270. The 1-MCP decreased the expression levels of ethylene synthesis, perception and signal genes ACS1, ACO1, ERS1, ETR2, ERF1 and wax-related genes (LACS1, LACS2, KCS2, KCS9, KCS20, FDH, CER6, CER10, LTPG1, LTP3, LTP4, ABCG11 and ABCG12). CONCLUSION: These results suggested that 1-MCP suppressed ethylene synthesis and signal-pathway and wax-related gene expression; it also reduced the wax and the size of crystals on the fruit surface in cold-stored 'Hongxiangsu' pears. © 2018 Society of Chemical Industry.


Subject(s)
Cyclopropanes/pharmacology , Pyrus/metabolism , Waxes/metabolism , Cold Temperature , Ethylenes/metabolism , Food Storage , Fruit/drug effects , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Pyrus/drug effects , Pyrus/genetics
19.
Protoplasma ; 252(1): 165-71, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24965371

ABSTRACT

Skin browning spot (SBS) is an important physiology disorder that often occurs in bagged fruit at the mature stage in the Huangguan (Pyrus bretschneideri × Pyrus pyrifolia) pear. Using atomic absorption spectrometry, X-ray microanalysis, and the potassium-pyroantimonate precipitation method, the water-soluble and total Ca(2+), Mg(2+), and K(+) contents, their microdistribution, and the Ca(2+) localization were investigated in bagged Huangguan pear fruit in the presence and absence of SBS. Our results show that the water-soluble and total Ca(2+) contents in both the skin and flesh tissue and the total Ca(2+) content only in the skin tissue of the fruits with SBS were significantly lower compared to those of the fruits without SBS. However, a higher K(+) content in the skin tissue was found in the fruits with SBS. There were no significant differences in the water-soluble and total Mg(2+) contents in the skin and flesh tissue between the fruits with and without SBS. In addition, the results of the X-ray microanalysis were consistent with changes in the total Ca(2+), Mg(2+), and K(+) contents in the skin and flesh tissue of the pear fruit that were affected by SBS. Compared to the skin tissue of pear fruit without SBS and the healthy part near the lesion zone of SBS, the lesion zone of SBS exhibited a high accumulation of Ca(2+) grains in the cell membrane of the epidermis cells, while fewer Ca(2+) grains were found in the vacuoles and cell walls. Altogether, these results indicate that Ca(2+) deficiency and the cellular Ca(2+) distribution in skin tissue contributed to the occurrence of SBS in bagged Huangguan pear fruit.


Subject(s)
Calcium, Dietary/metabolism , Fruit/chemistry , Pyrus/chemistry
20.
Food Chem ; 135(2): 415-22, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22868108

ABSTRACT

The peel yellowing is an important pigment physiological process of green fruit ripening, which mainly results from chlorophyll degradation in the fruit peel. In this work, two typical cultivars with different ripening speed, a slow ripening pear 'Emerald' (Pyrus bretschneideri Rehd. cv. Emerald) and a fast ripening 'Jingbai' (Pyrus ussuriensis Maxim. cv. Jingbai) were used to investigate the molecular mechanism of chlorophyll degradation in pear yellowing/ripening during postharvest storage. The fruits after harvest were treated with 1-methylcyclopropene (1-MCP), an ethylene action inhibitor at 1.0 µLl(-1) to determine its effect on chloroplast ultrastructure and the expression of chlorophyll degradation associated genes in peel tissues. Our results show that the pears treated with 1-MCP had a lower ethylene production rate and higher chlorophyll content compared to those of untreated fruit. The more intact chloroplasts with well-organised grana thylakoids and small plastoglobuli were maintained in the peel of 1-MCP treated fruit for up to 30 and 15 d in 'Emerald' and 'Jingbai', respectively. The expression of chlorophyll degradation associated genes: pheophorbide a oxygenase (PAO), non-yellow colouring (NYC), NYC1-like (NOL), stay-green 1(SGR1), was suppressed, while no significant change was found in chlorophyllase 1 (CHL1) and red chlorophyll catabolite reductase (RCCR) in both cultivar fruits treated with 1-MCP. These results suggest that 1-MCP can delay chlorophyll degradation by inhibiting ethylene production and suppressing the gene expression of PAO, NYC, NOL and SGR1, which are closely associated with chlorophyll catabolic pathway.


Subject(s)
Chlorophyll/metabolism , Chloroplasts/genetics , Cyclopropanes/pharmacology , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Pyrus/drug effects , Chlorophyll/chemistry , Chloroplasts/drug effects , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Food Storage , Fruit/drug effects , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Plant Proteins/metabolism , Pyrus/growth & development , Pyrus/metabolism , Pyrus/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...